首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Oral mucositis is an inflammation of the oral mucosa mainly resulting from the cytotoxic effect of 5-fluorouracil (5-FU). The literature shows anti-inflammatory action of l-cysteine (l-cys) involving hydrogen sulfide (H2S). In view of these properties, we investigate the effect of l-cys in oral mucositis induced by 5-FU in hamsters. The animals were divided into the following groups: saline 0.9%, mechanical trauma, 5-FU 60–40 mg/kg, l-cys 10/40 mg and NaHS 27 µg/kg. 5-FU was administered on days 1st to 2nd; 4th day excoriations were made on the mucosa; 5th–6th received l-cys and NaHS. For data analysis, histological analyses, mast cell count, inflammatory and antioxidants markers, and immunohistochemistry (cyclooxygenase-2(COX-2)/inducible nitric oxide synthase (iNOs)/H2S) were performed. Results showed that l-cys decreased levels of inflammatory markers, mast cells, levels of COX-2, iNOS and increased levels of antioxidants markers and H2S when compared to the group 5-FU (p < 0.005). It is suggested that l-cys increases the H2S production with anti-inflammatory action in the 5-FU lesion.

  相似文献   

2.
Zhang  Jiaxian  Jing  Yu  Zhang  Hu  Liu  Ping 《Amino acids》2021,53(9):1441-1454

l-arginine is a versatile amino acid with a number of bioactive metabolites. Increasing evidence implicates altered arginine metabolism in the aging and neurodegenerative processes. The present study, for the first time, determined the effects of sex and estrous cycle on the brain and blood (plasma) arginine metabolic profile in naïve rats. Female rats displayed significantly lower levels of l-arginine in the frontal cortex and three sub-regions of the hippocampus when compared to male rats. Moreover, female rats had significantly higher levels of l-arginine and γ-aminobutyric acid, but lower levels of l-ornithine, agmatine and putrescine, in plasma relative to male rats. The observed sex difference in brain l-arginine appeared to be independent of the enzymes involved in its metabolism, de novo synthesis and blood-to-brain transport (cationic acid transporter 1 protein expression at least), as well as circulating l-arginine. While the estrous cycle did not affect l-arginine and its metabolites in the brain, there were estrous cycle phase-dependent changes in plasma l-arginine. These findings demonstrate the sex difference in brain l-arginine in the estrous cycle-independent manner. Since peripheral blood has been increasingly used to identify biomarkers of brain pathology, the influences of sex and estrous cycle on blood arginine metabolic profile need attention when experimental research involves female rodents.

  相似文献   

3.
Oikawa  Tadao  Okajima  Kouhei  Yamanaka  Kazuya  Kato  Shiro 《Amino acids》2022,54(5):787-798

We succeeded in expressing selenocysteine β-lyase (SCL) from a lactic acid bacterium, Leuconostoc mesenteroides LK-151 (Lm-SCL), in the soluble fractions of Escherichia coli Rosetta (DE3) using a novel expression vector of pET21malb constructed by ourselves that has both maltose binding protein (MBP)- and 6?×?His-tag. Lm-SCL acted on l-selenocysteine, l-cysteine, and l-cysteine sulfinic acid but showed a high preference for l-selenocysteine. The kcat and kcat/Km values of Lm-SCL were determined to be 108 (min?1) and 42.0 (min?1?mM?1), respectively, and this was enough catalytic efficiency to suggest that Lm-SCL might also be involved in supplying elemental selenium from l-selenocysteine to selenoproteins like other SCLs. The optimum temperature and optimum pH of Lm-SCL were determined to be 37 °C and pH 6.5, respectively. Lm-SCL was stable at 37–45 °C and pH 6.5–7.5. Lm-SCL was completely inhibited by the addition of hydroxylamine, semicarbazide, and iodoacetic acid. The enzyme activity of Lm-SCL was decreased in the presence of various metal ions, especially Cu2+. The quaternary structure of Lm-SCL is a homodimer with a subunit molecular mass of 47.5 kDa. The similarity of the primary structure of Lm-SCL to other SCLs from Citrobacter freundii, Escherichia coli, humans, or mouse was calculated to be 47.0, 48.0, 12.5, or 24.0%, respectively. Unlike Ec-SCL, our mutational and molecular docking simulation studies revealed that C362 of Lm-SCL might also catalyze the deselenation of l-selenocysteine in addition to the desulfuration of l-cysteine.

  相似文献   

4.
Crystalline tyrosine phenol lyase was prepared from the cell extract of Erwinia herbicola grown in a medium supplemented with l-tyrosine. The crystalline enzyme was homogeneous by the criteria of ultracentrifugation and acrylamide gel electrophoresis. The molecular weight was determined to be approximately 259,000. The crystalline enzyme catalyzed the conversion of l-tyrosine into phenol, pyruvate and ammonia, in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from d-tyrosine, S-methyl-l-cysteine, 3, 4-dihydroxyphenyl-l-alanine, l- and d-serine, and l- and d-cysteine, but at lower rates than from l-tyrosine. l-Phenyl-alanine, l-alanine, phenol and pyrocatechol inhibited pyruvate formation from l-tyrosine.

Crystalline tyrosine phenol lyase from Erwinia herbicola is inactive in the absence of added pyridoxal phosphate. Binding of pyridoxal phosphate to the apoenzyme is accompanied by pronounced increase in absorbance at 340 and 425 mμ. The amount of pyridoxal phosphate bound to the apoenzyme was determined by equilibrium dialysis to be 2 moles per mole of enzyme. Addition of the substrate, l-tyrosine, or the competitive inhibitors, l-alanine and l-phenyl-alanine, to the holoenzyme causes appearance of a new absorption peak near 500 mμ which disappears as the substrate is decomposed but remains unchanged in the presence of the inhibitor.  相似文献   

5.

l-Carnosine is an amino acid that acts as an anti-oxidant, anti-toxic and neuroprotective agent. There is a paucity of data about the effectiveness of l-Carnosine in the management of autism spectrum disorder (ASD) in children. This study aimed at investigating the effectiveness of l-Carnosine as adjunctive therapy in the management of ASD. This was a randomized controlled trial. Children aged 3–6 years with a diagnosis of mild to moderate ASD were assigned to standard care arm (occupational and speech therapy) and intervention care arm (l-Carnosine, 10–15 mg/kg in 2 divided doses) plus standard care treatment. The children were assessed at the baseline and the end of 2 months for the scores of Childhood Autism Rating Scale, Second Edition—Standard Version (CARS2-ST), Autism Treatment Evaluation Checklist (ATEC), BEARS sleep screening tool and 6-item Gastrointestinal Severity Index (6-GSI). Of the sixty-seven children enrolled, sixty-three children had completed the study. No statistically significant difference (p > 0.05) was observed for any of the outcome measures assessed. Supplementation of l-Carnosine did not improve the total score of CARS2-ST, ATEC, BEARS sleep screening tool and 6-GSI scores of children with ASD. Further investigations are needed with more objective assessments to critically validate the effectiveness of l-Carnosine on ASD children for more decisive results.

  相似文献   

6.
Sousa  Cristina E. A.  Alves  Maria J. 《Amino acids》2021,53(7):1123-1134

d-Erythrosyl aziridines were obtained from d-erythrosyl triazoles either by photolysis or through diazirine intermediates. These were found to undergo rich, high yielding chemistry by reaction with protic acids (HCl, BiI3/H2O and trifluoroacetic acid) leading to two types of furanoid sugar α-amino acids, and polyhydroxylprolines. Based on experimental evidence, reaction mechanisms have been proposed for the syntheses.

  相似文献   

7.

Pectinaceous agricultural residues rich in d-galacturonic acid (d-GalA), such as sugar beet pulp, are considered as promising feedstocks for waste-to-value conversions. Aspergillus niger is known for its strong pectinolytic activity. However, while specialized strains for production of citric acid or proteins are well characterized, this is not the case for the production of pectinases. We, therefore, systematically compared the pectinolytic capabilities of six A. niger strains (ATCC 1015, ATCC 11414, NRRL 3122, CBS 513.88, NRRL 3, and N402) using controlled batch cultivations in stirred-tank bioreactors. A. niger ATCC 11414 showed the highest polygalacturonase activity, specific protein secretion, and a suitable morphology. Furthermore, d-GalA release from sugar beet pulp was 75% higher compared to the standard lab strain A. niger N402. Our study, therefore, presents a robust initial strain selection to guide future process improvement of d-GalA production from agricultural residues and identifies a high-performance base strain for further genetic optimizations.

  相似文献   

8.

At present, physicochemical properties of amino acid molecular crystals are of the utmost interest. The compounds where molecules have different chirality are the focus of particular interest. This paper, presents a study on the structural and electronic properties of crystalline l- and dl-valine within the framework of density functional theory including van der Waals interactions. The results of this study showed that electronic properties of the two forms of valine are similar at zero pressure. Pressure leads to different responses in these crystals which is manifested as various deformations of molecules. The pressure effect on the infrared spectra and distribution of electron density of l- and dl-valine has been studied.

  相似文献   

9.
7-Keto-8-aminopelargonic acid synthetase (KAPA synthetase) which catalyzes the formation of KAPA from pimelyl CoA and l-alanine, and is involved in biotin biosynthesis, was partially purified from a cell-free extract of Bacillus sphaericus by a procedure involving ammonium sulfate fraction ation, protamine treatment, and DEAE-cellulose column chromatography. The reaction product was bioautographically confirmed to be KAPA. Some properties of the enzyme were also investigated. Among the amino acids, only l-alanine was active as a substrate, condensing with pimelyl CoA, The reaction required pyridoxal phosphate but the other vitamin B6 compounds were inert. Typical inhibitors of pyridoxal phosphate enzymes showed marked inhibition to the reaction. Various amino acids such as l-cysteine, glycine, d-alanine, l-serine, l-histidine, and d-histidine were also found to be inhibitory.  相似文献   

10.
β-Chloro-l-alanine was catalytically converted to pyruvate, ammonia and chloride by α-aminoisobutyrate (AIB) decomposing enzyme (α, β elimination), which was synchronously inactivated. There was a linear relationship between α, β elimination and inactivation. With apoenzyme, neither α, β elimination nor inactivation occurred. These facts suggest that α, β elimination is dependent on pyridoxal 5′-phosphate, and inactivation cooperates with α, β elimination (syncatalytic inactivation). But it seemed that d-form of β-chloroalanine was not a substrate for AIB decomposing enzyme, because just half amount of β-chloro-dl-alanine was decomposed to pyruvate by the enzyme.

An identical active site for each of following three reactions were shown by the fact that AIB decomposing activity, transamination activity and α, β elimination activity were lost in parallel. From a kinetic study, the affinity of the enzyme toward β-chloro-l-alanine was shown to be higher than that toward AIB or l-alanine. The turnover number, about 8,000, of α, β elimination during the inactivation of one mol of the enzyme was much larger than that of d-amino acid transaminase or alanine racemase.  相似文献   

11.
Tang  Yue  Tang  Wei  Wang  Min  Zhang  Zhilong  Chen  Yihua 《中国科学:生命科学英文版》2022,65(5):1014-1023

Heptoses are important structural components of Gram-negative bacterium cell wall and participate in bacterial colonization, infection, and immune recognition. Current knowledge of NDP-heptose originating from d-sedoheptulose 7-phosphate in Grampositive bacterium remains limited. Here, in silico analysis suggested that the special tridomain NDP-heptose synthetases with isomerase, kinase, and nucleotidyltransferase activities are conservatively distributed in Actinobacteria class of Gram-positive bacterium. Enzymatical characterization of the tridomain proteins from different strains showed that they are involved in ADP-d-glycero-β-d-manno-heptose biosynthesis despite the unexpected discovery of kinase activities deficient in some proteins. The presence of three types of NDP-heptose synthetases in Gram-positive bacterium suggests that it is also a rich source of heptoses and the heptose moieties may play important roles in vivo. Our work updates the understanding of NDP-heptose biosynthesis in Gram-positive bacterium and lays a solid foundation for further physiological function explorations.

  相似文献   

12.
Yang  Jiangxia  Li  Xiaoqi  Du  Yingxiang  Ma  Mingxuan  Zhang  Liu  Zhang  Jian  Li  Peipei 《Amino acids》2021,53(2):195-204

In this work, we prepared gold nanoparticles (AuNPs) by employing gluconic acid (GlcA) as reducing-cum-stabilizing agent. The proposed GlcA-AuNPs successfully worked as a colorimetric sensor for visual chiral recognition of aromatic amino acid enantiomers, namely tyrosine (d/l-Tyr), phenylalanine (d/l-Phe), and tryptophan (d/l-Trp). After adding L-types to GlcA-AuNPs solution, the color of the mixture changed from red to purple (or gray), while no obvious color change occurred on the addition of D-types. The effect can be detected by naked eyes. The particles have been characterized by transmission electron microscopy, Fourier-transform infrared spectroscopy, zeta potential, the dynamic light scattering analysis as well as UV–Vis spectroscopy. This assay can be used to determine the enantiomeric excess of l-Trp in the range from 0 to + 100%. The method has advantages in simplicity, sensitivity, fast response, and low cost.

  相似文献   

13.
ω-Amino acid: pyruvate aminotransferase, purified to homogeneity and crystallized from a Pseudomonas sp. F–126, has a molecular weight of 172,000 or 167,000±3000 as determined by the gel-filtration or sedimentation equilibrium method, respectively. The enzyme catalyzes the transamination between various ω-amino acids or amines and pyruvate which is the exclusive amino acceptor. α-Amino acids except l-α-alanine are inert as amino donor. The Michaelis constants are 3.3 mm for β-alanine, 19 mm for 2-aminoethane sulfonate and 3.3 mm for pyruvate. The enzyme has a maximum activity in the pH range of 8.5~10.5. The enzyme is stable at pH 8.0~10.0 and at up to 65°C at pH 8.0. Carbonyl reagents strongly inhibit the enzyme activity. Pyridoxal 5′-phosphate and pyridoxamine 5′-phosphate reactivate the enzyme inactivated by carbonyl reagents. The inhibition constants were determined to be 0.73 mm for d-penicillamine and 0.58 mm for d-cycloserine. Thiol reagents, chelating agents and l-α-amino acids showed no effect on the enzyme activity.  相似文献   

14.
Growth of various microorganisms in media containing high concentrations of glycine or d-amino acids was examined. Susceptibilities to glycine or d-amino acids differed among microorganisms, and the differences in susceptibility have no direct relation with Gram staining, morphological forms, and aerobic or anaerobic nature of the organisms. Certain glycine-resistant bacteria tested, which included Bacillus cereus, Staphylococcus aureus and Serratia marcescens, exhibited relatively high oxidative activities towards glycine. The inhibition of the growth of Escherichia coli by either glycine or d-amino acids, which included d-threonine, d-alanine and d-lysine, was reversed by l-alanine, partialy by l-serine, and not by l-lysine or l-threonine. These results suggest that the growth inhibition of microorganisms by d-amino acids was similar to that by glycine. The incorporation of l-alanine into E. coli cells which were preincubated with glycine was less than those of preincubated without glycine. Particularly, the incorporation into the cell wall fraction was most susceptible to glycine. An additive effect of penicillin and glycine was observed in the inhibition of cell wall biosynthesis as determined by the intracellular accumulation of N-acetylamino sugar compounds.  相似文献   

15.
The 7-keto-8-aminopelargonic acid (KAPA) synthetase activities of cell-free extracts from various bacteria were investigated. The experiments on the substrate specificity of KAPA synthetase, using crude cell-free extracts from bacteria having high enzyme activity, showed that l-serine and pyruvic acid could replace l-alanine, but that, when the enzyme was partially purified, these compounds were not effective. Many kinds of amino acids such as l-cysteine, l-serine, d-alanine, glycine, d-histidine, and l-histidine, inhibited the enzyme activity. This inhibition was found to be competitive with l-alanine. Pyridoxal 5′-phosphate, which is a cofactor of the enzyme, also inhibited the enzyme activity at high concentrations. The repression of KAPA synthetase by biotin occurred in Bacillus subtilis and B. sphaericus but not in Micrococcus roseus and Pseudomonas fluorescens, even at a concentration of 1000 mµg per ml of biotin.  相似文献   

16.
3-Chloro-d-alanine chloride-lyase, which occurs in the cells of Pseudomonas putida CR 1-1, catalyzes not only the α,β-elimination reaction of 3-chloro-d-alanine to form pyruvate, but also its β-replacement reaction in the presence of a high concentration of sodium hydrosulfide to form d-cysteine. Using the β-replacement reaction, the enzymatic synthesis of d-cysteine by resting cells was investigated. The culture conditions for cell production of the bacterium with high d-cysteine-producing activity and the reaction conditions for d-cysteine production were optimized. Under these optimal reaction conditions, 100% of the added 3-chloro-d-alanine could be converted to d-cysteine and, as the highest yield, 20.6 mg of d-cysteine per 1.0 ml of reaction mixture could be synthesized.  相似文献   

17.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

18.
l-Alanine adding enzymes from Bacillus subtilis and Bacillus cereus which catalyzed l-alanine incorporation into UDPMurNAc were partially purified and the properties of the enzymes were examined. The enzyme from B. subtilis was markedly stimulated by reducing agents including 2-mercaptoethanol, dithiothreitol, glutathione and cysteine. Mn2+ and Mg2+ activated l-alanine adding activity and their optimal concentrations were 2 to 5 mm and 10 mm, respectively. The optimum pH was 9.5 and the Km for l-alanine was 1.8×10?4m. l-Alanine adding reaction was strongly inhibited by p-chloromercuribenzoate and N-ethyl-maleimide. Among glycine, l- and d-amino acids and glycine derivatives, glycine was the most effective inhibitor of the l-alanine adding reaction. The enzyme from B. cereus was more resistant to glycine than that from B. subtilis. Glycine was incorporated into UDPMurNAc in place of l-alanine, and the Ki for glycine was 4.2×l0?3m with the enzyme from B. subtilis. From these data, the growth inhibition of bacteria by glycine is discussed.  相似文献   

19.
d-Coronamic acid was deaminated by 1-aminocyclopropane-1-carboxylate (ACPC) deaminase to produce α-keto-n-caproic acid. This deaminase which was purified from Pseudomonas sp. ACP was active to only d-coronamic acid among its stereoisomers. l-Coronamic acid or dl-allocoronamic acid was inactive or negligibly poor as the substrate. In addition, both deamination of ACPC and d-coronamic acid were inhibited by l-alanine, not by d-isomer and the inhibition of ACPC deamination by l-alanine was competitive. On the basis of these results, stereoselectivity of the enzymatic deamination was discussed.  相似文献   

20.
Tang  Xiao-Ling  Hu  Wen-Ye  Wang  Zhi-Chao  Zheng  Ren-Chao  Zheng  Yu-Guo 《Biotechnology letters》2021,43(7):1265-1276
Objective

To solve the bottleneck of plasmid instability during microbial fermentation of l-DOPA with recombinant Escherichia coli expressing heterologous tyrosine phenol lyase.

Results

The tyrosine phenol lyase from Fusobacterium nucleatum was constitutively expressed in E. coli and a fed-batch fermentation process with temperature down-shift cultivation was performed. Efficient strategies including replacing the original ampicillin resistance gene, as well as inserting cer site that is active for resolving plasmid multimers were applied. As a result, the plasmid stability was increased. The co-use of cer site on plasmid and kanamycin in culture medium resulted in proportion of plasmid containing cells maintained at 100% after fermentation for 35 h. The specific activity of tyrosine phenol lyase reached 1493 U/g dcw, while the volumetric activity increased from 2943 to 14,408 U/L for l-DOPA biosynthesis.

Conclusions

The established strategies for plasmid stability is not only promoted the applicability of the recombinant cells for l-DOPA production, but also provides important guidance for industrial fermentation with improved microbial productivity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号