首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics.Angiosperms are a diverse group of seed plants that reproduce by a double fertilization event; the first produces a zygote and the second a specialized nutritive tissue known as the endosperm. The endosperm and the maternally derived testa (seed coat) evolved to protect the embryo until conditions are favorable for germination and establishment of the next generation (Rajjou and Debeaujon, 2008; Linkies et al., 2010). Endosperm from cereals/grasses, such as maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum), is vital for human and animal nutrition and is therefore of global economic importance (Olsen, 2007). In many seeds, such as some representatives of the Brassicaceae, the endosperm is entirely absent at seed maturity, the storage reserves having been absorbed by the cotyledons during embryo development. Arabidopsis (Arabidopsis thaliana) and Lepidium (Lepidium sativum) are notable exceptions in that they have retained a thin layer of endosperm tissue in the mature seed (Müller et al., 2006; Linkies and Leubner-Metzger, 2012).Some seeds exhibit primary dormancy at maturity that has been induced by abscisic acid (ABA; Hilhorst, 1995; Kucera et al., 2005). In its simplest sense, dormancy can be thought of as a block to germination of an intact viable seed under favorable conditions (Hilhorst, 1995; Bewley, 1997). A more sophisticated definition was proposed by Baskin and Baskin (2004), who state that a dormant seed does not have the capacity to germinate in a specified period of time under any combination of normal physical environmental factors that are otherwise favorable for its germination. Seed dormancy can be imposed by the embryo, the seed coat (including the endosperm), or a combination of both depending on the plant species (Bewley, 1997).The endosperm has been shown to be an important regulator of germination potential in several systems, including tomato (Solanum lycopersicum; Groot et al., 1988; Toorop et al., 2000), tobacco (Nicotiana tabacum; Leubner-Metzger et al., 1995; Petruzzelli et al., 2003), Arabidopsis (Bethke et al., 2007), and Lepidium (Müller et al., 2006; Linkies et al., 2009; Voegele et al., 2011). Arabidopsis continues to be an important model for elucidating the hormonal and genetic networks that regulate dormancy and germination (Kucera et al., 2005; Holdsworth et al., 2008), and new bioinformatic methods are providing insights into the evolutionary conservation of such networks in angiosperms (Bassel et al., 2011). Research using the close relative Lepidium, whose larger size makes it amenable to biomechanical techniques, has given insight into the hormonal control of endosperm weakening during germination and established that the mechanism of control is conserved between Arabidopsis, Lepidium, and tobacco (Müller et al., 2006; Linkies et al., 2009; Voegele et al., 2011). It has been reported that ABA is a key regulator of germination in tobacco, Arabidopsis, and Lepidium, controlling the process of endosperm rupture but not testa rupture (Leubner-Metzger et al., 1995; Petruzzelli et al., 2003; Müller et al., 2006). Microarray analyses of ABA-treated Arabidopsis and Lepidium seeds revealed that many cell wall remodeling enzyme (CWRE) genes are down-regulated upon exogenous application of ABA (Penfield et al., 2006; Linkies et al., 2009). Therefore, it follows that ABA impacts cell wall remodeling, which influences germination kinetics. The endosperm is therefore an important control tissue for seed germination and represents a useful model to investigate cell wall architectures and their remodeling.Cell walls are robust, multifunctional structures that not only protect cells from biotic and abiotic stresses, but also regulate growth, physiology and development (Albersheim et al., 2010). Cell walls are fibrous composites in which cellulose microfibrils are coextensive with/cross-linked by noncellulosic polysaccharides. In dicotyledonous plants, xyloglucan (XG) is a major polymer that can cross-link cellulose (Cosgrove, 2000). Load-bearing fibrous networks impart tensile strength to cell walls and are embedded in more soluble, gel-like matrices of pectic polysaccharides, glycoproteins, proteins, ions, and water. The constituent pectic polymers are currently classified as homogalacturonan (HG), rhamnogalacturonan I [RG-I; also comprising arabinans and type 1 (arabino)galactans as side branches] and rhamnogalacturonan II, and xylogalacturonan (XGA) (Willats et al., 2001; Caffall and Mohnen, 2009). Pectins are involved in a diverse range of processes, including the regulation of intercellular adhesion/cell separation at the middle lamella, regulating the ionic status, and the porosity of cell walls that influences the access of CWREs to substrates (Willats et al., 2001). Noncellulosic polysaccharides exhibit numerous structural elaborations and differ in their glycan, methyl, and acetyl substitution (Caffall and Mohnen, 2009; Burton et al., 2010). Such modifications have the potential to impact their functionality, including their ability to interact with other wall components and their susceptibility to degradation and modification by CWREs.Studies using Arabidopsis (Iglesias-Fernández et al., 2011), Lepidium (Morris et al., 2011), and tomato (Groot et al., 1988) have highlighted a role for endo-β-mannanases (EBMs), enzymes that degrade heteromannan polysaccharides, during seed germination. In hard seeds with heteromannan-rich endosperms, such as carob (Ceratonia siliqua), date (Phoenix dactylifera), Chinese senna (Senna obtusifolia), and fenugreek (Trigonella foenum-graecum), however, it has been proposed that thinner walls in the micropylar endosperm (ME) and not EBM activity are responsible for allowing radicle protrusion during germination (Gong et al., 2005). Therefore, enzymatic cell wall remodeling and native cell wall architectural asymmetries both have the potential to impact on germination.Although studies on the molecular networks controlling germination have indicated a role for several classes of CWREs in endosperm remodeling and the promotion of germination (Penfield et al., 2006; Kanai et al., 2010; Morris et al., 2011), there is a paucity of information relating to the characterization of such changes at the cell wall level and, indeed, cell wall structures themselves. This study focuses on the targets of CWRE genes currently thought to be involved in seed germination (i.e. cellulose, XG, heteromannan, and pectic polysaccharides). We show that all three seeds possess a similar core cell wall architecture containing unesterified HG, arabinan, and XG. In tobacco, the core cell wall architecture is restricted to the ME, whereas in Arabidopsis and Lepidium, this architecture is observed throughout the endosperm. A further unique feature of the tobacco endosperm is abundant heteromannan. We also outline, using Arabidopsis, to what extent cell wall components contribute to the regulation of seed germination.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Interactions between cell wall polymers are critical for establishing cell wall integrity and cell-cell adhesion. Here, we exploit the Arabidopsis (Arabidopsis thaliana) seed coat mucilage system to examine cell wall polymer interactions. On hydration, seeds release an adherent mucilage layer strongly attached to the seed in addition to a nonadherent layer that can be removed by gentle agitation. Rhamnogalacturonan I (RG I) is the primary component of adherent mucilage, with homogalacturonan, cellulose, and xyloglucan constituting minor components. Adherent mucilage contains rays composed of cellulose and pectin that extend above the center of each epidermal cell. CELLULOSE SYNTHASE5 (CESA5) and the arabinogalactan protein SALT-OVERLY SENSITIVE5 (SOS5) are required for mucilage adherence through unknown mechanisms. SOS5 has been suggested to mediate adherence by influencing cellulose biosynthesis. We, therefore, investigated the relationship between SOS5 and CESA5. cesa5-1 seeds show reduced cellulose, RG I, and ray size in adherent mucilage. In contrast, sos5-2 seeds have wild-type levels of cellulose but completely lack adherent RG I and rays. Thus, relative to each other, cesa5-1 has a greater effect on cellulose, whereas sos5-2 mainly affects pectin. The double mutant cesa5-1 sos5-2 has a much more severe loss of mucilage adherence, suggesting that SOS5 and CESA5 function independently. Double-mutant analyses with mutations in MUCILAGE MODIFIED2 and FLYING SAUCER1 that reduce mucilage release through pectin modification suggest that only SOS5 influences pectin-mediated adherence. Together, these findings suggest that SOS5 mediates adherence through pectins and does so independently of but in concert with cellulose synthesized by CESA5.Cellulosic cell walls are a defining feature of land plants. Primary cell walls are composed of three major classes of polysaccharides: cellulose, hemicelluloses, and pectins. In addition, approximately 10% of the primary cell wall is composed of protein (Burton et al., 2010). Cell walls provide mechanical support for the cell, and cell wall carbohydrates in the middle lamellae mediate cell-cell adhesion (Caffall and Mohnen, 2009). Current models of cell wall structure depict a cellulose-hemicellulose network embedded in an independent pectin gel (for review, see Albersheim et al., 2011). These components are believed to interact through both covalent and noncovalent bonds to provide structure and strength to the cell wall, although the relative importance of pectin and its interactions with the hemicellulose-cellulose network remain unclear (for review, see Cosgrove, 2005).Another gap in our understanding of cell wall structure and assembly is the role of arabinogalactan proteins (AGPs). AGPs are a family of evolutionarily conserved secreted proteins highly glycosylated with type II arabinogalactans, and they can be localized to the plasma membrane by a C-terminal glycophosphatidylinositol (GPI) lipid anchor (for review, see Schultz et al., 2000; Showalter, 2001; Johnson et al., 2003; Seifert and Roberts, 2007; Ellis et al., 2010). AGPs can be extensively modified in the cell wall; many glycosyl hydrolases can affect AGP function by cleaving their glycosyl side chains (Sekimata et al., 1989; Cheung et al., 1995; Wu et al., 1995; Kotake et al., 2005). The GPI anchor can also be cleaved, releasing the AGPs from the membrane into the cell wall (Schultz et al., 2000). Although their exact roles are still unclear, AGPs have been proposed to interact with cell wall polysaccharides, initiate intracellular signaling cascades, and influence a wide variety of biological processes (for review, see Seifert and Roberts, 2007; Ellis et al., 2010; Tan et al., 2013).Many fasciclin-like AGPs (FLAs), which contain at least one fasciclin domain (FAS) associated with protein-protein interactions, have been suggested to influence cellulose biosynthesis or organization (Seifert and Roberts, 2007; Li et al., 2010; MacMillan et al., 2010). FLA3 RNA interference lines have reduced intine cell wall biosynthesis and loss of Calcofluor white (a fluorescent dye specific for glycan molecules) staining in aborted pollen grains (Li et al., 2010). A fla11 fla12 double mutant was shown to have reduced cellulose deposition, altered cellulose microfibril angle, and reduced cell wall integrity (MacMillan et al., 2010). The fla11 fla12 double mutant also had reductions in arabinans, galactans, and rhamnose (MacMillan et al., 2010). FLA4/SALT-OVERLY SENSITIVE5 (SOS5) was identified in a screen for salt sensitivity in roots. The SOS5 gene encodes an FLA protein with a GPI anchor, two AGP-like domains, and two FAS domains (Shi et al., 2003). Plants homozygous for the loss-of-function conditional allele sos5-1 have thinner root cell walls that appear less organized (Shi et al., 2003). The presence of the two FAS domains has led to the suggestion that SOS5 may interact with other proteins, forming a network that strengthens the cell wall (Shi et al., 2003). SOS5 is involved in regulation of cell wall rheology through a pathway involving two Leu-rich repeat receptor-like kinases, FEI1 and FEI2 (Xu et al., 2008). SOS5 and FEI2 are also required for normal seed coat mucilage adherence and hypothesized to do so by influencing cellulose biosynthesis (Harpaz-Saad et al., 2011, 2012).Arabidopsis (Arabidopsis thaliana) seed coat mucilage is a powerful model for studying cell wall biosynthesis and polysaccharide interactions (Arsovski et al., 2010; Haughn and Western, 2012). Seed coat epidermal cells sequentially produce two distinct types of secondary cell walls with unique morphologies and properties (Western et al., 2000; Windsor et al., 2000). Between approximately 5 and 9 d approximate time of fertilization (DPA), seed coat epidermal cells synthesize mucilage and deposit it in the apoplast, creating a donut-shaped mucilage pocket that surrounds a central cytoplasmic column (Western et al., 2000, 2004; Haughn and Chaudhury, 2005). From 9 to 13 DPA, the cytoplasmic column is gradually replaced by a cellulose-rich, volcano-shaped secondary cell wall called the columella (Beeckman et al., 2000; Western et al., 2000; Windsor et al., 2000; Stork et al., 2010; Mendu et al., 2011).Seed mucilage is composed primarily of relatively unbranched rhamnogalacturonan I (RG I) with minor amounts of homogalacturonan (HG), cellulose, and hemicelluloses (for review, see Haughn and Western, 2012). When mucilage is hydrated, it expands rapidly from the apoplastic pocket, forming a halo that surrounds the seed. Mucilage separates into two fractions: a loose nonadherent fraction and an inner adherent fraction that can only be released by vigorous shaking, strong bases, or glycosidases (for review, see North et al., 2014). Galactans and arabinans are also present in mucilage, and their regulation by glycosidases is required for correct mucilage hydration (Dean et al., 2007; Macquet et al., 2007b; Arsovski et al., 2009). For example, β-XYLOSIDASE1 encodes a bifunctional β-d-xylosidase/α-l-arabinofuranosidase required for arabinan modification in mucilage, and β-xylosidase1 mutant seeds have a delayed mucilage release phenotype (Arsovski et al., 2009). MUCILAGE MODIFIED2 (MUM2) encodes a β-d-galactosidase, and mum2 seeds fail to release mucilage when hydrated in water (Dean et al., 2007; Macquet et al., 2007b). MUM2 is believed to modify RG I galactan side chains but may also affect the galactan component of other mucilage components (Dean et al., 2007; Macquet et al., 2007b). Galactans are capable of binding to cellulose in vitro and could affect mucilage hydration through pectin-cellulose interactions (Zykwinska et al., 2005, 2007a, 2007b; Dick-Pérez et al., 2011; Wang et al., 2012), although carbohydrate linkage analysis suggests that the galactan side chains are very short.Several studies indicate that seed mucilage extrusion and expansion are also influenced by methylesterification of HG. For example, both SUBTILISIN-LIKE SER PROTEASE1.7 and PECTIN METHYLESTERASE INHIBITOR6 are required for proper methyl esterification of mucilage (Rautengarten et al., 2008; Saez-Aguayo et al., 2013). Mutations in another gene, FLYING SAUCER1 (FLY1; a transmembrane E3 ubiquitin ligase), reduce the degree of pectin methylesterification in mucilage and cause increased mucilage adherence and defective mucilage extrusion (Voiniciuc et al., 2013). fly1 seeds have disc-like structures at the edge of the mucilage halo, which are outer primary cell wall fragments that detach from the columella during extrusion and are difficult to separate from the adherent mucilage (Voiniciuc et al., 2013).Recently, CELLULOSE SYNTHASE5 (CESA5) and SOS5 were proposed to facilitate cellulose-mediated mucilage adherence (Harpaz-Saad et al., 2011; Mendu et al., 2011; Sullivan et al., 2011). A simple hypothesis for the role of CESA5 in mucilage adherence is that it synthesizes cellulose, which interacts with the mucilage pectin to mediate adherence. Loss of CESA5 function results in a reduction of mucilage cellulose biosynthesis and a less adherent mucilage cell wall matrix (Mendu et al., 2011; Sullivan et al., 2011). The role of SOS5 in mucilage adherence is more difficult to explain. SOS5 null mutations cause a loss-of-adherence phenotype similar to cesa5-1 seeds, suggesting that SOS5 may regulate mucilage adherence by influencing CESA5 function (Harpaz-Saad et al., 2011). However, the mechanism through which SOS5 could influence CESA5 and/or cellulose biosynthesis is not clear.To better understand the role of SOS5 in mucilage adherence and its relationship to CESA5, we thoroughly investigated the seed coat epidermal cell phenotypes of the cesa5-1 and sos5-2 single mutants as well as those of the cesa5-1 sos5-2 double mutant. We also investigated how cellulose, SOS5, and pectin interact to mediate mucilage adherence by constructing double mutants with either cesa5-1 or sos5-2 together with either mum2-1 or fly1. Our results suggest that SOS5 mediates mucilage adherence independently of CESA5. Furthermore, compared with CESA5, SOS5 has a greater influence on mucilage pectin structure, suggesting that SOS5 mediates mucilage adherence through pectins, not cellulose.  相似文献   

16.
Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement.Sorghum (Sorghum bicolor) is a globally cultivated source of food, feed, and fiber. Contrasting needs for elemental nutrient accumulation limit crop yield and quality for sorghum marketed to different sectors. The seed-bearing reproductive organs, or panicles, in sorghum represent up to 30% of the total dry matter yield (Amaducci et al., 2004). Plant-based diets, in which grains compose the major food source, require the accumulation of bioavailable essential elements in the plant seeds. Currently, iron (Fe) and zinc (Zn) deficiencies negatively affect the health of over two billion people worldwide (World Health Organization, 2002). Increased bioavailable elemental nutrient content in the edible portions of sorghum for human and animal nutrition could ameliorate this nutritional crisis (Graham et al., 1999; World Health Organization, 2002). Additional global health benefits could be achieved by increasing magnesium (Mg), selenium (Se), calcium (Ca), and copper (Cu; White and Broadley, 2005) while reducing the concentration of toxic elements, including arsenic (As) and cadmium (Cd; Ma et al., 2008).Seed element accumulation results from interconnected biological processes, including element uptake by the roots, translocation and remobilization within the plant, and ultimately import, deposition, and assimilation/storage in the seeds. Element availability is further affected by the accumulation of metabolites in seeds (Vreugdenhil et al., 2004). High-throughput ionomic analysis, or concurrent measurement of multiple elements, allows for the quantitative and simultaneous measurement of an organism’s elemental composition, providing a snapshot of the functional state of an organism under different experimental conditions (Salt et al., 2008). Most studies of the plant ionome utilize inductively coupled plasma mass spectroscopy (ICP-MS). Briefly, inductively coupled plasma (ICP) functions to ionize the analyte into atoms, which are then detected by mass spectroscopy. Reference standards are used to identify and quantitate each element of interest in the sample. ICP-MS analysis can be accomplished in as little as 1 min per sample, which allows for high-throughput processing of thousands of samples (Salt et al., 2008). Previous studies have demonstrated that several elements, including Fe, manganese (Mn), Zn, cobalt (Co), and Cd, share mechanisms of accumulation (Yi and Guerinot, 1996; Vert et al., 2002; Connolly et al., 2003). Ionomic signatures derived from multiple elements also have been shown to better predict plant physiological status for some elements than the measure of the element’s concentration, including essential nutrients like Fe (Baxter et al., 2008). Holistically examining the ionome provides significant insights into the networks underlying ion homeostasis beyond single-element studies (Baxter and Dilkes, 2012).There are over 45,000 catalogued lines of sorghum at the U.S. Department of Agriculture Germplasm Resource Information Network. This diverse collection of sorghum germplasm contains genetic variation with undiscovered impact on seed element composition (Das et al., 1997). Mapping quantitative trait loci for seed element concentration has been successful in a number of species, including Arabidopsis (Arabidopsis thaliana; Vreugdenhil et al., 2004; Waters and Grusak, 2008; Buescher et al., 2010), rice (Oryza sativa; Norton et al., 2010; Zhang et al., 2014), wheat (Triticum aestivum; Shi et al., 2008; Peleg et al., 2009), and maize (Zea mays; Simić et al., 2012; Baxter et al., 2013, 2014). Genome-wide association (GWA) mapping is well suited for uncovering the genetic basis for complex traits, including seed element accumulation. One of the key strengths of association mapping is that a priori knowledge is not necessary to identify new loci associated with the trait of interest. Furthermore, a GWA mapping population is composed of lines that have undergone numerous recombination events, allowing for a narrower mapping interval. Previous GWA studies in maize (Tian et al., 2011), rice (Huang et al., 2010), and sorghum (Morris et al., 2013) have been successful in identifying the genetic basis for various agronomic traits. Here, we analyzed the seed ionome from a community-generated association panel to identify potential loci underlying seed element accumulation in sorghum.  相似文献   

17.
Cell wall remodeling is an essential mechanism for the regulation of plant growth and architecture, and xyloglucans (XyGs), the major hemicellulose, are often considered as spacers of cellulose microfibrils during growth. In the seed, the activity of cell wall enzymes plays a critical role in germination by enabling embryo cell expansion leading to radicle protrusion, as well as endosperm weakening prior to its rupture. A screen for Arabidopsis (Arabidopsis thaliana) mutants affected in the hormonal control of germination identified a mutant, xyl1, able to germinate on paclobutrazol, an inhibitor of gibberellin biosynthesis. This mutant also exhibited reduced dormancy and increased resistance to high temperature. The XYL1 locus encodes an α-xylosidase required for XyG maturation through the trimming of Xyl. The xyl1 mutant phenotypes were associated with modifications to endosperm cell wall composition that likely impact on its resistance, as further demonstrated by the restoration of normal germination characteristics by endosperm-specific XYL1 expression. The absence of phenotypes in mutants defective for other glycosidases, which trim Gal or Fuc, suggests that XYL1 plays the major role in this process. Finally, the decreased XyG abundance in hypocotyl longitudinal cell walls of germinating embryos indicates a potential role in cell wall loosening and anisotropic growth together with pectin de-methylesterification.Seed germination is a complex process that begins with the absorption of water and ends when the radicle breaks through the seed coat (or testa). In Arabidopsis (Arabidopsis thaliana), as in most angiosperms, the embryo is surrounded by the triploid endosperm and the seed coat of maternal origin (Nonogaki et al., 2010; North et al., 2010). The completion of germination requires the growth potential of the embryo to overcome the resistance of the endosperm and testa layers, which is controlled by the hormonal balance between abscisic acid (ABA) and gibberellins (GAs). During seed development, ABA induces embryo growth arrest at the transition from embryogenesis to the phase of reserve accumulation and then induces primary dormancy, thus preventing vivipary and allowing seed dispersal in a dormant state. Dormancy delays germination until environmental conditions become favorable for seedling survival and growth (Finkelstein et al., 2008; Nambara et al., 2010; Graeber et al., 2012). Dormancy depth varies among plant species and between Arabidopsis accessions; however, seed dormancy of the most commonly used accession Columbia-0 (Col-0) is relatively low and can be released by a few weeks of after-ripening (dry storage) or stratification (cold imbibition). Shortly after hydration, ABA is rapidly degraded in both dormant and nondormant seeds, but ABA catabolism is more active in nondormant seeds, leading to lower ABA levels and thus allowing GA activation of germination processes (Millar et al., 2006). GA increases the elasticity of the wall, thereby reducing the resistance of the endosperm while triggering the elongation of the hypocotyl (Nonogaki et al., 2010). Radicle protrusion through the micropylar endosperm is also stimulated by ethylene, which has an antagonist action with ABA on endosperm cap weakening (Linkies and Leubner-Metzger, 2012). Microarray analyses highlighted the importance of cell wall remodeling processes during germination in various species (Penfield et al., 2006; Morris et al., 2011; Endo et al., 2012; Martínez-Andújar et al., 2012; Dekkers et al., 2013). These studies provided compelling evidence that the tissue-specific expression of genes encoding cell wall biosynthesis or modification enzymes, and their differential response to hormonal signals in the endosperm and embryo, influences the rate of germination.Cell walls are constituted of crystalline cellulose microfibrils that are embedded in an amorphous matrix of complex polysaccharides: pectin and hemicelluloses. Xyloglucan (XyG) is the major hemicellulose polymer in the primary cell walls of gymnosperms and most angiosperms, and its binding to cellulose microfibrils by hydrogen bonding contributes to loosening or stiffening of the wall during cell elongation (Cosgrove, 2005). XyG chains can be cleaved and reconnected by endo-transglycosylases/hydrolases (XTH). Other families of proteins also act on XyG chains, such as expansins, which are thought to nonenzymatically modulate XyG interactions with cellulose microfibrils, thereby controlling the distance between the microfibrils. XyG has a backbone of (1→4)-linked β-d-glucopyranosyl residues, which can be substituted with α-d-xylopyranosyl residues at O-6 (Supplemental Fig. S1). The pattern of XyG substitutions is described using a single-letter nomenclature (Fry et al., 1993). The letter G is used for an unsubstituted Glc and X when it is substituted with a Xyl. In Arabidopsis, like in many other dicots, the xylosylation pattern is in general regular, consisting mainly of XXXG-type units. The xylosyl residue can be further substituted at O-2 with a β-galactosyl (L side chain), which in turn can be substituted at O-2 with α-l-fucosyl (F side chain).Many of the biosynthetic enzymes involved in XyG biosynthesis have been identified, including a glucan synthase, xylosyl, galactosyl, and fucosyltransferases (Scheller and Ulvskov, 2010). Among these, two xylosyltransferases, named XXT1 and XXT2, have been shown to be involved in the synthesis of XyG in Arabidopsis, and the double mutant xxt1 xxt2 lacks detectable XyG (Cavalier et al., 2008). Both belong to the GT34 subfamily of glycosyltransferases, and a third enzyme, XXT5 from a separate clade of GT34, may also be involved in XyG synthesis (Zabotina et al., 2008). These glycosyltransferases are Golgi-localized enzymes, which produce substituted XyG precursors that are secreted into the cell wall. Subsequent trimming of XyG chains is performed by apoplastic glycosidases and determines hemicellulose structure and properties in the wall (Scheller and Ulvskov, 2010). A number of genes involved in the XyG metabolism have been identified, including XYL1, BGAL10, and AXY8 encoding, respectively, α-xylosidase, β-galactosidase, and α-fucosidase (Sampedro et al., 2010; Günl et al., 2011; Günl and Pauly, 2011; Sampedro et al., 2012). Loss of function of these glycosidases results in significant alterations in XyG composition. Although XyG has been proposed to be a major player in cell wall extension and plant growth, mutants with altered XyG composition display only minor growth-related phenotypes. The XyG-deficient double mutant xxt1 xxt2 shows no major growth defect except for deformed root hairs (Cavalier et al., 2008). Nevertheless, it was recently reported that the production of Gal-depleted XyG causes dwarfism in the galactosyltransferase mutant mur3 (Kong et al., 2015) in contrast to xyl1 and bgal10, where increased galactosylation results in shorter but wider siliques (Sampedro et al., 2010; Günl and Pauly, 2011; Sampedro et al., 2012). Phenotypes have not been observed from either reduced or increased fucosylation in the fucosyltransferase mutant mur2 and fucosidase mutant axy8 (Vanzin et al., 2002; Günl et al., 2011). AXY8 overexpression does, however, restore hypocotyl elongation in dwarf AUXIN BINDING PROTEIN1 knockdown seedlings. This demonstrates that in muro removal of Fuc residues can modulate cell elongation (Paque et al., 2014).In contrast to the numerous studies on the impact of XyG composition on plant growth, little information is available on the role of XyG in seed development or germination. A recent study highlighted the slower germination rate of xxt1 xxt2 mutant seeds compared to wild type, whereas germination rates of the arabinan-deficient arad1 arad2 and putative pectin methyltransferase qua2 mutants were not affected (Lee et al., 2012). As mentioned above, XyG chain hydrolysis and linkage is catalyzed by XTH activities, one of which, AtXTH31/XTR8, is encoded by an endosperm-specific gene. Loss of function leads to faster germination, suggesting that AtXTH31/XTR8 is involved in the reinforcement of the cell wall of the endosperm during germination (Endo et al., 2012). Here, we report the identification of an additional xyl1 allele from a screen designed to isolate mutants impaired in the hormonal control of germination, based on their ability to germinate on the GA biosynthesis inhibitor paclobutrazol. To investigate the role of XyG metabolism in seed dormancy and germination characteristics, xyl1 seed phenotypes were correlated with spatio-temporal XyG accumulation during seed development and germination. Comparative studies using mutants impaired in two other apoplastic glycosidases, BGAL10 and AXY8, indicate a major role for XYL1 in XyG remodelling processes that affect germination.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号