首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of Rhodococcus jostii RHA1 contains an unusually large number of oxygenase encoding genes. Many of these genes have yet an unknown function, implying that a notable part of the biochemical and catabolic biodiversity of this Gram-positive soil actinomycete is still elusive. Here we present a multiple sequence alignment and phylogenetic analysis of putative R. jostii RHA1 flavoprotein hydroxylases. Out of 18 candidate sequences, three hydroxylases are absent in other available Rhodococcus genomes. In addition, we report the biochemical characterization of 3-hydroxybenzoate 6-hydroxylase (3HB6H), a gentisate-producing enzyme originally mis-annotated as salicylate hydroxylase. R. jostii RHA1 3HB6H expressed in Escherichia coli is a homodimer with each 47 kDa subunit containing a non-covalently bound FAD cofactor. The enzyme has a pH optimum around pH 8.3 and prefers NADH as external electron donor. 3HB6H is active with a series of 3-hydroxybenzoate analogues, bearing substituents in ortho- or meta-position of the aromatic ring. Gentisate, the physiological product, is a non-substrate effector of 3HB6H. This compound is not hydroxylated but strongly stimulates the NADH oxidase activity of the enzyme.  相似文献   

2.
The 3-hydroxybenzoate hydroxylase (MHBH) from Comamonas testosteroni KH122-3s is a single-component flavoprotein monooxygenase, a member of the glutathione reductase (GR) family. It catalyzes the conversion of 3-hydroxybenzoate to 3,4-dihydroxybenzoate with concomitant requirements for equimolar amounts of NADPH and molecular oxygen. The production of dihydroxy-benzenoid derivative by hydroxylation is the first step in the aerobic degradation of various phenolic compounds in soil microorganisms. To establish the structural basis for substrate recognition, the crystal structure of MHBH in complex with its substrate was determined at 1.8 A resolution. The enzyme is shown to form a physiologically active homodimer with crystallographic 2-fold symmetry, in which each subunit consists of the first two domains comprising an active site and the C-terminal domain involved in oligomerization. The protein fold of the catalytic domains and the active-site architecture, including the FAD and substrate-binding sites, are similar to those of 4-hydroxybenzoate hydroxylase (PHBH) and phenol hydroxylase (PHHY), which are members of the GR family, providing evidence that the flavoprotein aromatic hydroxylases share similar catalytic actions for hydroxylation of the respective substrates. Structural comparison of MHBH with the homologous enzymes suggested that a large tunnel connecting the substrate-binding pocket to the protein surface serves for substrate transport in this enzyme. The internal space of the large tunnel is distinctly divided into hydrophilic and hydrophobic regions. The characteristically stratified environment in the tunnel interior and the size of the entrance would allow the enzyme to select its substrate by amphiphilic nature and molecular size. In addition, the structure of the Xe-derivative at 2.5 A resolution led to the identification of a putative oxygen-binding site adjacent to the substrate-binding pocket. The hydrophobic nature of the xenon-binding site extends to the solvent through the tunnel, suggesting that the tunnel could be involved in oxygen transport.  相似文献   

3.
The genome of Rhodococcus jostii RHA1 contains an unusually large number of oxygenase encoding genes. Many of these genes have yet an unknown function, implying that a notable part of the biochemical and catabolic biodiversity of this Gram-positive soil actinomycete is still elusive. Here we present a multiple sequence alignment and phylogenetic analysis of putative R. jostii RHA1 flavoprotein hydroxylases. Out of 18 candidate sequences, three hydroxylases are absent in other available Rhodococcus genomes. In addition, we report the biochemical characterization of 3-hydroxybenzoate 6-hydroxylase (3HB6H), a gentisate-producing enzyme originally mis-annotated as salicylate hydroxylase. R. jostii RHA1 3HB6H expressed in Escherichia coli is a homodimer with each 47kDa subunit containing a non-covalently bound FAD cofactor. The enzyme has a pH optimum around pH 8.3 and prefers NADH as external electron donor. 3HB6H is active with a series of 3-hydroxybenzoate analogues, bearing substituents in ortho- or meta-position of the aromatic ring. Gentisate, the physiological product, is a non-substrate effector of 3HB6H. This compound is not hydroxylated but strongly stimulates the NADH oxidase activity of the enzyme.  相似文献   

4.
3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is an NADH-specific flavoprotein monooxygenase that catalyzes the para-hydroxylation of 3-hydroxybenzoate (3HB) to form 2,5-dihydroxybenzoate (2,5-DHB). Based on results from stopped-flow spectrophotometry, the reduced enzyme-3HB complex reacts with oxygen to form a C4a-peroxy flavin with a rate constant of 1.13 ± 0.01 × 106 m−1 s−1 (pH 8.0, 4 °C). This intermediate is subsequently protonated to form a C4a-hydroperoxyflavin with a rate constant of 96 ± 3 s−1. This step shows a solvent kinetic isotope effect of 1.7. Based on rapid-quench measurements, the hydroxylation occurs with a rate constant of 36 ± 2 s−1. 3HB6H does not exhibit substrate inhibition on the flavin oxidation step, a common characteristic found in most ortho-hydroxylation enzymes. The apparent kcat at saturating concentrations of 3HB, NADH, and oxygen is 6.49 ± 0.02 s−1. Pre-steady state and steady-state kinetic data were used to construct the catalytic cycle of the reaction. The data indicate that the steps of product release (11.7 s−1) and hydroxylation (36 ± 2 s−1) partially control the overall turnover.  相似文献   

5.
3-Hydroxybenzoate 6-hydroxylase from Pseudomonas aeruginosa   总被引:7,自引:0,他引:7  
An inducible 3-hydroxybenzoate 6-hydroxylase has been purified to homogeneity from Pseudomonas aeruginosa. It contains FAD as a prosthetic group. 3-Hydroxybenzoate is quantitatively hydroxylated to give gentisate with equimolar consumptions of NADH and O2. NADPH will substitute as an electron donor, and several aromatic analogues of 3-hydroxybenzoate stimulate reduced nucleotide oxidation by the enzyme with formation of both hydrogen peroxide and hydroxylated products. Of various analogues of 3-hydroxybenzoate, those substituted in 2,4,5 and 6-positions are competent substrates; partial uncoupling of electron flow from hydroxylation with concomitant formation of hydrogen peroxide and “gentisates” occurs. The “natural” product of the reaction, gentisate, is an effector in that it stimulates NADH oxidation with the formation of hydrogen peroxide. 3-hydroxybenzoate 6-hydroxylase thus resembles other flavoprotein hydroxylases in the general regulatory properties dictated by their aromatic substrates, pseudosubstrates or effectors.  相似文献   

6.
3-Hydroxybenzoate 4-hydroxylase from Pseudomonas testosteroni   总被引:2,自引:0,他引:2  
3-Hydroxybenzoate 4-hydroxylase has been purified to homogeneity from extracts pf Ps. testosteroni. It is a flavoprotein (FAD) which catalyzes the transformation of 3 -hydroxybenzoate to protocatechuate with equimolar consumption of NADPH and O2. NADH is a poor substitute for NADPH. Several analogues of 3-hydroxybenzoate substituted in the 2,4,5 and 6 positions, act as effectors and substrates for NADPH oxidation but with varying efficiencies of hydroxylation. 2,3-, 2,5-, 3,5-dihydroxybenzoates, 3-hydroxyanthranilate, 2-fluoro-5-hydroxybenzoate and 4-fluoro-3-hydroxybenzoate are competent substrates.  相似文献   

7.
The ornithine hydroxylase from Pseudomonas aeruginosa (PvdA) catalyzes the FAD-dependent hydroxylation of the side chain amine of ornithine, which is subsequently formylated to generate the iron-chelating hydroxamates of the siderophore pyoverdin. PvdA belongs to the class B flavoprotein monooxygenases, which catalyze the oxidation of substrates using NADPH as the electron donor and molecular oxygen. Class B enzymes include the well studied flavin-containing monooxygenases and Baeyer-Villiger monooxygenases. The first two structures of a class B N-hydroxylating monooxygenase were determined with FAD in oxidized (1.9 Å resolution) and reduced (3.03 Å resolution) states. PvdA has the two expected Rossmann-like dinucleotide-binding domains for FAD and NADPH and also a substrate-binding domain, with the active site at the interface between the three domains. The structures have NADP(H) and (hydroxy)ornithine bound in a solvent-exposed active site, providing structural evidence for substrate and co-substrate specificity and the inability of PvdA to bind FAD tightly. Structural and biochemical evidence indicates that NADP+ remains bound throughout the oxidative half-reaction, which is proposed to shelter the flavin intermediates from solvent and thereby prevent uncoupling of NADPH oxidation from hydroxylated product formation.  相似文献   

8.
3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is a nicotinamide adenine dinucleotide (NADH)-specific flavoprotein monooxygenase involved in microbial aromatic degradation. The enzyme catalyzes the para hydroxylation of 3-hydroxybenzoate (3-HB) to 2,5-dihydroxybenzoate (2,5-DHB), the ring-fission fuel of the gentisate pathway. In this study, the kinetics of reduction of the enzyme-bound flavin by NADH was investigated at pH 8.0 using a stopped-flow spectrophotometer, and the data were analyzed comprehensively according to kinetic derivations and simulations. Observed rate constants for reduction of the free enzyme by NADH under anaerobic conditions were linearly dependent on NADH concentrations, consistent with a one-step irreversible reduction model with a bimolecular rate constant of 43 ± 2 M(-1) s(-1). In the presence of 3-HB, observed rate constants for flavin reduction were hyperbolically dependent on NADH concentrations and approached a limiting value of 48 ± 2 s(-1). At saturating concentrations of NADH (10 mM) and 3-HB (10 mM), the reduction rate constant is ~51 s(-1), whereas without 3-HB, the rate constant is 0.43 s(-1) at a similar NADH concentration. A similar stimulation of flavin reduction was found for the enzyme-product (2,5-DHB) complex, with a rate constant of 45 ± 2 s(-1). The rate enhancement induced by aromatic ligands is not due to a thermodynamic driving force because Em 0 for the enzyme-substrate complex is -179 ± 1 mV compared to an E(m)(0) of -175 ± 2 mV for the free enzyme. It is proposed that the reduction mechanism of 3HB6H involves an isomerization of the initial enzyme-ligand complex to a fully activated form before flavin reduction takes place.  相似文献   

9.
p-Hydroxyphenylacetate (HPA) 3-hydroxylase is a two-component flavoprotein monooxygenase that catalyzes the hydroxylation of p-hydroxyphenylacetate to form 3,4-dihydroxyphenylacetate. Based on structures of the oxygenase component (C2), both His-120 and Ser-146 are located ∼2.8 Å from the hydroxyl group of HPA. The variants H120N, H120Q, H120Y, H120D, and H120E can form C4a-hydroperoxy-FMN (a reactive intermediate necessary for hydroxylation) but cannot hydroxylate HPA. The impairment of H120N is not due to substrate binding because the variant can still bind HPA. In contrast, the H120K variant catalyzes hydroxylation with efficiency comparable with that of the wild-type enzyme; the hydroxylation rate constant for H120K is 5.7 ± 0.6 s−1, and the product conversion ratio is 75%, compared with values of 16 s−1 and 90% for the wild-type enzyme. H120R can also catalyze hydroxylation, suggesting that a positive charge on residue 120 can substitute for the hydroxylation function of His-120. Because the hydroxylation reaction of wild-type C2 is pH-independent between pH 6 and 10, the protonation status of key components required for hydroxylation likely remains unchanged in this pH range. His-120 may be positively charged for selective binding to the phenolate form of HPA, i.e. to form the Hisδ+·HPAδ− complex, which in turn promotes oxygen atom transfer via an electrophilic aromatic substitution mechanism. Analysis of Ser-146 variants revealed that this residue is necessary for but not directly engaged in hydroxylation. Product formation in S146A is pH-independent and constant at ∼70% over a pH range of 6–10, whereas product formation for S146C decreased from ∼65% at pH 6.0 to 27% at pH 10.0. These data indicate that the ionization of Cys-146 in the S146C variant has an adverse effect on hydroxylation, possibly by perturbing formation of the Hisδ+·HPAδ− complex needed for hydroxylation.  相似文献   

10.
In the biosynthesis of several anthracyclines, aromatic polyketides produced by many Streptomyces species, the aglycone core is modified by a specific flavin adenine dinucleotide (FAD)- and NAD(P)H-dependent aklavinone-11-hydroxylase. Here, we report the crystal structure of a ternary complex of this enzyme from Streptomyces purpurascens, RdmE, with FAD and the substrate aklavinone. The enzyme is built up of three domains, a FAD-binding domain, a domain involved in substrate binding, and a C-terminal thioredoxin-like domain of unknown function. RdmE exhibits structural similarity to aromatic hydroxylases from the p-hydroxybenzoate hydroxylase family, but unlike most other related enzymes, RdmE is a monomer. The substrate is bound in a hydrophobic pocket in the interior of the enzyme, and access to this pocket is provided through a different route than for the isoalloxazine ring of FAD—the backside of the ligand binding cleft. The architecture of the substrate binding pocket and the observed enzyme-aklavinone interactions provide a structural explanation for the specificity of the enzyme for non-glycosylated substrates with C9-R stereochemistry. The isoalloxazine ring of the flavin cofactor is bound in the “out” conformation but can be modeled in the “in” conformation without invoking large conformational changes of the enzyme. This model places the flavin ring in a position suitable for catalysis, almost perpendicular to the tetracyclic ring system of the substrate and with a distance of the C4a carbon atom of the isoalloxazine ring to the C-11 carbon atom of the substrate of 4.8 Å. The structure suggested that a Tyr224-Arg373 pair might be involved in proton abstraction at the C-6 hydroxyl group, thereby increasing the nucleophilicity of the aromatic ring system and facilitating electrophilic attack by the perhydroxy-flavin intermediate. Replacement of Tyr224 by phenylalanine results in inactive enzyme, whereas mutants at position Arg373 retain catalytic activity close to wild-type level. These data establish an essential role of residue Tyr224 in catalysis, possibly in aligning the substrate in a position suitable for catalysis.  相似文献   

11.
Renalase is a recently discovered flavoprotein that regulates blood pressure, regulates sodium and phosphate excretion, and displays cardioprotectant action through a mechanism that is barely understood to date. It has been proposed to act as a catecholamine-degrading enzyme, via either O2-dependent or NADH-dependent mechanisms. Here we report the renalase crystal structure at 2.5 Å resolution together with new data on its interaction with nicotinamide dinucleotides. Renalase adopts the p-hydroxybenzoate hydroxylase fold topology, comprising a Rossmann-fold-based flavin adenine dinucleotide (FAD)-binding domain and a putative substrate-binding domain, the latter of which contains a five-stranded anti-parallel β-sheet. A large cavity (228 Å3), facing the flavin ring, presumably represents the active site. Compared to monoamine oxidase or polyamine oxidase, the renalase active site is fully solvent exposed and lacks an ‘aromatic cage’ for binding the substrate amino group. Renalase has an extremely low diaphorase activity, displaying lower kcat but higher kcat/Km for NADH compared to NADPH. Moreover, its FAD prosthetic group becomes slowly reduced when it is incubated with NADPH under anaerobiosis, and binds NAD+ or NADP+ with Kd values of ca 2 mM. The absence of a recognizable NADP-binding site in the protein structure and its poor affinity for, and poor reactivity towards, NADH and NADPH suggest that these are not physiological ligands of renalase. Although our study does not answer the question on the catalytic activity of renalase, it provides a firm framework for testing hypotheses on the molecular mechanism of its action.  相似文献   

12.
Aminotransferases catalyze reversibly the transamination reaction by a ping-pong bi-bi mechanism with pyridoxal 5′-phosphate (PLP) as a cofactor. Various aminotransferases acting on a range of substrates have been reported. Aromatic transaminases are able to catalyze the transamination reaction with both aromatic and acidic substrates. Two aminotransferases from C. albicans, Aro8p and Aro9p, have been identified recently, exhibiting different catalytic properties. To elucidate the multiple substrate recognition of the two enzymes we determined the crystal structures of an unliganded CaAro8p, a complex of CaAro8p with the PLP cofactor bound to a substrate, forming an external aldimine, CaAro9p with PLP in the form of internal aldimine, and CaAro9p with a mixture of ligands that have been interpreted as results of the enzymatic reaction. The crystal structures of both enzymes contains in the asymmetric unit a biologically relevant dimer of 55?kDa for CaAro8 and 59?kDa for CaAro9p protein subunits. The ability of the enzymes to process multiple substrates could be related to a feature of their architecture in which the active site resides on one subunit while the substrate-binding site is formed by a long loop extending from the other subunit of the dimeric molecule. The separation of the two functions to different chemical entities could facilitate the evolution of the substrate-binding part and allow it to be flexible without destabilizing the conservative catalytic mechanism.  相似文献   

13.
A novel flavoprotein monooxygenase, 4-hydroxybenzoate 1-hydroxylase (decarboxylating), from Candida parapsilosis CBS604 was purified to apparent homogeneity. The enzyme is induced when the yeast is grown on either 4-hydroxybenzoate, 2,4-dihydroxybenzoate, or 3,4-dihydroxybenzoate as the sole carbon source. The purified monooxygenase is a monomer of about 50 kDa containing flavin adenine dinucleotide as weakly bound cofactor. 4-Hydroxybenzoate 1-hydroxylase from C. parapsilosis catalyzes the oxidative decarboxylation of a wide range of 4-hydroxybenzoate derivatives with the stoichiometric consumption of NAD(P)H and oxygen. Optimal catalysis is reached at pH 8, with NADH being the preferred electron donor. By using (18)O2, it was confirmed that the oxygen atom inserted into the product 1,4-dihydroxybenzene is derived from molecular oxygen. 19F nuclear magnetic resonance spectroscopy revealed that the enzyme catalyzes the conversion of fluorinated 4-hydroxybenzoates to the corresponding hydroquinones. The activity of the enzyme is strongly inhibited by 3,5-dichloro-4-hydroxybenzoate, 4-hydroxy-3,5-dinitrobenzoate, and 4-hydroxyisophthalate, which are competitors with the aromatic substrate. The same type of inhibition is exhibited by chloride ions. Molecular orbital calculations show that upon deprotonation of the 4-hydroxy group, nucleophilic reactivity is located in all substrates at the C-1 position. This, and the fact that the enzyme is highly active with tetrafluoro-4-hydroxybenzoate and 4-hydroxy-3-nitrobenzoate, suggests that the phenolate forms of the substrates play an important role in catalysis. Based on the substrate specificity, a mechanism is proposed for the flavin-mediated oxidative decarboxylation of 4-hydroxybenzoate.  相似文献   

14.
Comamonas testosteroni strain CNB-1 was isolated from activated sludge and has been investigated for its ability to degrade 4-chloronitrobenzene. Results from this study showed that strain CNB-1 grew on phenol, gentisate, vanillate, 3-hydroxybenzoate (3HB), and 4-hydroxybenzoate (4HB) as carbon and energy sources. Proteomic data and enzyme activity assays suggested that vanillate, 3HB, and 4HB were degraded in strain CNB-1 via protocatechuate (PCA) 4,5-cleavage pathway. The genetics and biochemistry of the PCA 4,5-cleavage pathway were investigated. Results showed that the 4-oxalomesaconate (OMA) hydratase from C. testosteroni takes only enol-OMA as substrate. A previously functionally unknown gene pmdU encodes an OMA tautomerase and catalyzes conversion of OMAketo into OMAenol. The 4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolase is encoded by pmdF and catalyzes the last step of the PCA 4,5-cleavage pathway. We explored the 1,183 microbial genomes at GenBank for potential PCA 4,5-cleavage pathways, and 33 putative pmd clusters were found. Results suggest that PCA 4,5-cleavage pathways are mainly distributed in α- and β-Proteobacteria.  相似文献   

15.
Cyclohexylamine oxidase (CHAO) is a flavoprotein first described in Brevibacterium oxydans strain IH-35A that carries out the initial step of the degradation of the industrial chemical cyclohexylamine to cyclohexanone. We have cloned and expressed in Escherichia coli the CHAO-encoding gene (chaA) from B. oxydans, purified CHAO and determined the structures of both the holoenzyme form of the enzyme and a product complex with cyclohexanone. CHAO is a 50 kDa monomer with a PHBH fold topology. It belongs to the flavin monooxygenase family of enzymes and exhibits high substrate specificity for alicyclic amines and sec-alkylamines. The overall structure is similar to that of other members of the flavin monooxygenase family, but lacks either of the C- or N-terminal extensions observed in these enzymes. Active site features of the flavin monooxygenase family are conserved in CHAO, including the characteristic aromatic cage. Differences in the orientations of residues of the CHAO aromatic cage result in a substrate-binding site that is more open than those of its structural relatives. Since CHAO has a buried hydrophobic active site with no obvious route for substrates and products, a random acceleration molecular dynamics simulation has been used to identify a potential egress route. The path identified includes an intermediate cavity and requires transient conformation changes in a shielding loop and a residue at the border of the substrate-binding cavity. These results provide a foundation for further studies with CHAO aimed at identifying features determining substrate specificity and for developing the biocatalytic potential of this enzyme.  相似文献   

16.
Trametes multicolor pyranose 2-oxidase (P2O) is a flavoprotein oxidase that oxidizes d-glucose at C2 to 2-keto-d-glucose by a highly regioselective mechanism. In this work, fluorinated sugar substrates were used as mechanistic probes to investigate the basis of regioselectivity in P2O. Although frequently used to study the mechanisms of glycoside hydrolases, our work provides the first example of applying these probes to sugar oxidoreductases. Our previous structure of the P2O mutant H167A in complex with the slow substrate 2-deoxy-2-fluoro-d-glucose showed a substrate-binding mode compatible with oxidation at C3. To accommodate the sugar, a gating segment, 454FSY456, in the substrate recognition loop partly unfolded to create a spacious and more polar active site that is distinct from the closed state of P2O. The crystal structure presented here shows that the preferred C2 oxidation where an ordered complex of P2O H167A with 3-deoxy-3-fluoro-d-glucose at 1.35 Å resolution was successfully trapped. In this semi-open C2-oxidation complex, the substrate recognition loop tightens to form an optimized substrate complex stabilized by interactions between Asp452 and glucose O4, as well as Tyr456 and the glucose O6 group, interactions that are not possible when glucose is positioned for oxidation at C3. The different conformations of the 454FSY456 gating segment in the semi-open and closed states induce backbone and side-chain movements of Thr169 and Asp452 that add further differential stabilization to the individual states. We expect the semi-open state (C2-oxidation state) and closed state to be good approximations of the active-site structure during the reductive half-reaction (sugar oxidation) and oxidative half-reaction (O2 reduction).  相似文献   

17.
Bacillus subtilis can synthesize the compatible solute glycine betaine as an osmoprotectant from an exogenous supply of the precursor choline. Import of choline is mediated by two osmotically inducible ABC transport systems: OpuB and OpuC. OpuC catalyzes the import of various osmoprotectants, whereas OpuB is highly specific for choline. OpuBC is the substrate-binding protein of the OpuB transporter, and we have analyzed the affinity of the OpuBC/choline complex by intrinsic tryptophan fluorescence and determined a Kd value of about 30 μM. The X-ray crystal structure of the OpuBC/choline complex was solved at a resolution of 1.6 Å and revealed a fold typical of class II substrate-binding proteins. The positively charged trimethylammonium head group of choline is wedged into an aromatic cage formed by four tyrosine residues and is bound via cation-pi interactions. The hydroxyl group of choline protrudes out of this aromatic cage and makes a single interaction with residue Gln19. The substitution of this residue by Ala decreases choline binding affinity by approximately 15-fold. A water network stabilizes choline within its substrate-binding site and promotes indirect interactions between the two lobes of the OpuBC protein. Disruption of this intricate water network by site-directed mutagenesis of selected residues in OpuBC either strongly reduces choline binding affinity (between 18-fold and 25-fold) or abrogates ligand binding. The crystal structure of the OpuBC/choline complex provides a rational for the observed choline specificity of the OpuB ABC importer in vivo and explains its inability to catalyze the import of glycine betaine into osmotically stressed B. subtilis cells.  相似文献   

18.
Salicylate 5-hydroxylase (SAL5H), m-hydroxybenzoate 6-hydroxylase (MHB6H), and p-hydroxybenzoate 3-hydroxylase (PHB3H) from Gram-positive Rhodococcus erythropolis strain S1 were characterized physicochemically and immunochemically. The subunit size and amino acid composition of SAL5H, MHB6H, and PHB3H from strain S1 showed properties similar to those of other flavin-containing aromatic compound monooxygenases such as p-hydroxybenzoate hydroxylase and salicylate 1-hydroxylase (SAL1H), belonging to p-hydroxybenzoate hydroxylase-class, except for homotetrameric structure and cofactor specficity. The N-terminal amino acid sequence of MHB6H from strain S1 indicated significant similarity of ADP-binding region in the N-terminal portion of the enzyme with that known for SAL1H from Pseudomonas putida. Immunochemical properties, determined while conducting serological experiments, showed SAL5H and MHB6H from strain S1 to be immunologically different from PHB3H from strain S1, while SAL5H and MHB6H to apparently share partial antigenic determinants.  相似文献   

19.
The crystal structure of geranylgeranyl reductase (GGR) from Sulfolobus acidocaldarius was determined in order to elucidate the molecular mechanism of the catalytic reaction. The enzyme is a flavoprotein and is involved in saturation of the double bonds on the isoprenoid moiety of archaeal membranes. The structure determined in this study belongs to the p-hydroxybenzoate hydroxylase family in the glutathione reductase superfamily. GGR functions as a monomer and is divided into the FAD-binding, catalytic and C-terminal domains. The catalytic domain has a large cavity surrounded by a characteristic YxWxFPx7-8GxG motif and by the isoalloxazine ring of an FAD molecule. The cavity holds a lipid molecule, which is probably derived from Escherichia coli cells used for over-expression. One of the two forms of the structure clarifies the presence of an anion pocket holding a pyrophosphate molecule, which might anchor the phosphate head of the natural ligands. Mutational analysis supports the suggestion that the three aromatic residues of the YxWxFPx7-8GxG motif hold the ligand in the appropriate position for reduction. Cys47, which is widely conserved in GGRs, is located at the si-side of the isoalloxazine ring of FAD and is shown by mutational analysis to be involved in catalysis. The catalytic cycle, including the FAD reducing factor binding site, is proposed on the basis of the detailed analysis of the structure.  相似文献   

20.
The structure of the enzyme p-hydroxybenzoate hydroxylase (EC 1.14.13.2) in a complex with its substrate has been determined at a resolution of 2.5 Å. The molecular weight is 43,000 and the dimensions of one molecule are approximately 70 Å × 50 Å × 45 Å. The crystal structure contains dimers of these molecules. Approximately 16% of the residues occur in β-sheets and 26% in α-heliees. The molecule can be divided into three domains. The active site, near the isoalloxazine ring, is formed by side-chains of the three domains. The N-5 edge of the isoalloxazine ring points to p-hydroxybenzoate, which is bound in a deep cleft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号