首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The ability to discriminate and store similar inputs as distinct representations in memory is thought to rely on a process called pattern separation in the dentate gyrus of the hippocampus. Recent computational and empirical findings support a role for adult-born granule neurons in spatial pattern separation. We reviewed rodent studies that have manipulated both hippocampal adult neurogenesis and assessed pattern separation. The majority of studies report a supporting role of adult born neurons in pattern separation as measured at the behavioral level. However, closer evaluation of the published findings reveals variation in both pattern separation tasks and in the interpretation of behavioral performance that, taken together, suggests that the role of hippocampal adult neurogenesis in pattern separation may be less established than is currently assumed. Assessment of pattern separation at the network level through the use of immediate early gene expression, optogenetic, pharmacogenetic and/or in vivo electrophysiology studies could be instrumental in further confirming a role of adult born neurons in pattern separation further. Finally, hippocampal adult neurogenesis and pattern separation are not an exclusive pair, as evidence for hippocampal adult neurogenesis contributing to the temporal separation of events in memory, forgetting and cognitive flexibility has also been found. We conclude that whereas current empirical evidence for the involvement of hippocampal adult neurogenesis in pattern separation seems supportive, there is a need for careful interpretation of behavioral findings and an integration of the various proposed functions of adult born neurons.  相似文献   

2.
This article is part of a Special Issue “Estradiol and Cognition”.There are sex differences in hippocampus-dependent cognition and neurogenesis suggesting that sex hormones are involved. Estrogens modulate certain forms of spatial and contextual memory and neurogenesis in the adult female rodent, and to a lesser extent male, hippocampus. This review focuses on the effects of sex and estrogens on hippocampal learning, memory, and neurogenesis in the young and aged adult rodent. We discuss how factors such as the type of estrogen, duration and dose of treatment, timing of treatment, and type of memory influence the effects of estrogens on cognition and neurogenesis. We also address how reproductive experience (pregnancy and mothering) and aging interact with estrogens to modulate hippocampal cognition and neurogenesis in females. Given the evidence that adult hippocampal neurogenesis plays a role in long-term spatial memory and pattern separation, we also discuss the functional implications of regulating neurogenesis in the hippocampus.  相似文献   

3.

Background

Estrogens modulate the morphology and function of the hippocampus. Recent studies have focused on the effects of different types of estrogens on neuroplasticity in the hippocampus and cognition. There are three main forms of estrogens found in mammals: estradiol, estrone, and estriol. The vast majority of studies have used estradiol to investigate the effects of estrogens on the brain.

Scope of review

This review focuses on the effects of different estrogens on adult hippocampal neurogenesis, synaptic plasticity in the hippocampus, and cognition in female rats.

Major conclusions

Different forms of estrogens modulate neuroplasticity and cognition in complex and intriguing ways. Specifically, estrogens upregulate adult hippocampal neurogenesis (via cell proliferation) and synaptic protein levels in the hippocampus in a time- and dose-dependent manner. Low levels of estradiol facilitate spatial working memory and contextual fear conditioning while high levels of estradiol impair spatial working, spatial reference memory and contextual fear conditioning. In addition, estrone impairs contextual fear conditioning.

General significance

Advances in our knowledge of how estrogens exert their effects on the brain may ultimately lead to refinements in targeted therapies for cognitive impairments at all stages of life. However caution should be taken in interpreting current research and in conducting future studies as estrogens likely work differently in males than in females.  相似文献   

4.
Whereas animal models of depression are associated with decreased adult hippocampal neurogenesis, antidepressant treatments, including pharmacotherapy but also electroconvulsive therapy, have the opposite action, as they stimulate cell proliferation and the survival and maturation of newborn dentate gyrus neurons. Although the lack of these new cells is not causally involved in depression, as their absence does not trigger a depressive-episode per se, their loss has been shown to be causally involved in the ability of chronic monoaminergic antidepressants to achieve remission. However, the process by which the stimulation of hippocampal neurogenesis can elicit recovery after a depressive-like episode is poorly understood. The accepted view is that hippocampal newborn neurons integrate into the hippocampal network and thus participate in hippocampal cognitive functions crucial for remission. The hippocampus is associated with a wide range of such functions, including spatial navigation, pattern separation, encoding of new contextual information, emotional behavior and control over the hypothalamic-pituitary-adrenal axis. The present review aims at discussing each of these functions and tries to identify the process by which newborn cells participate in remission after successful therapy. Finally, future directions are proposed for a better understanding of these mechanisms.  相似文献   

5.
Studies using the Morris water maze to assess hippocampal function in animals, in which adult hippocampal neurogenesis had been suppressed, have yielded seemingly contradictory results. Cyclin D2 knockout (Ccnd2?/?) mice, for example, have constitutively suppressed adult hippocampal neurogenesis but had no overt phenotype in the water maze. In other paradigms, however, ablation of adult neurogenesis was associated with specific deficits in the water maze. Therefore, we hypothesized that the neurogenesis‐related phenotype might also become detectable in Ccnd2?/? mice, if we used the exact setup and protocol that in our previous study had revealed deficits in mice with suppressed adult neurogenesis. Ccnd2?/? mice indeed learned the task and developed a normal preference for the goal quadrant, but were significantly less precise for the exact goal position and were slower in acquiring efficient and spatially more precise search strategies. Upon goal reversal (when the hidden platform was moved to a new position) Ccnd2?/? mice showed increased perseverance at the former platform location, implying that they were less flexible in updating the previously learned information. Both with respect to adult neurogenesis and behavioral performance, Ccnd2+/? mice ranged between wild types and knockouts. Importantly, hippocampus‐dependent learning was not generally impaired by the mutation, but specifically functional aspects relying on precise and flexible encoding were affected. Whether ablation of adult neurogenesis causes a specific behavioral phenotype thus also depends on the actual task demands. The test parameters appear to be important variables influencing whether a task can pick up a contribution of adult neurogenesis to test performance.  相似文献   

6.

Background

Rodent studies show that neurogenesis is necessary for mediating the salutary effects of antidepressants. Nonhuman primate (NHP) studies may bridge important rodent findings to the clinical realm since NHP-depression shares significant homology with human depression and kinetics of primate neurogenesis differ from those in rodents. After demonstrating that antidepressants can stimulate neurogenesis in NHPs, our present study examines whether neurogenesis is required for antidepressant efficacy in NHPs.

Materials/Methodology

Adult female bonnets were randomized to three social pens (N = 6 each). Pen-1 subjects were exposed to control-conditions for 15 weeks with half receiving the antidepressant fluoxetine and the rest receiving saline-placebo. Pen-2 subjects were exposed to 15 weeks of separation-stress with half receiving fluoxetine and half receiving placebo. Pen-3 subjects 2 weeks of irradiation (N = 4) or sham-irradiation (N = 2) and then exposed to 15 weeks of stress and fluoxetine. Dependent measures were weekly behavioral observations and postmortem neurogenesis levels.

Results

Exposing NHPs to repeated separation stress resulted in depression-like behaviors (anhedonia and subordinance) accompanied by reduced hippocampal neurogenesis. Treatment with fluoxetine stimulated neurogenesis and prevented the emergence of depression-like behaviors. Ablation of neurogenesis with irradiation abolished the therapeutic effects of fluoxetine. Non-stressed controls had normative behaviors although the fluoxetine-treated controls had higher neurogenesis rates. Across all groups, depression-like behaviors were associated with decreased rates of neurogenesis but this inverse correlation was only significant for new neurons in the anterior dentate gyrus that were at the threshold of completing maturation.

Conclusion

We provide evidence that induction of neurogenesis is integral to the therapeutic effects of fluoxetine in NHPs. Given the similarity between monkeys and humans, hippocampal neurogenesis likely plays a similar role in the treatment of clinical depression. Future studies will examine several outstanding questions such as whether neuro-suppression is sufficient for producing depression and whether therapeutic neuroplastic effects of fluoxetine are specific to antidepressants.  相似文献   

7.
Deficiency in fragile X mental retardation protein (FMRP) results in fragile X syndrome (FXS), an inherited form of intellectual disability. Despite extensive research, it is unclear how FMRP deficiency contributes to the cognitive deficits in FXS. Fmrp-null mice show reduced adult hippocampal neurogenesis. As Fmrp is also enriched in mature neurons, we investigated the function of Fmrp expression in neural stem and progenitor cells (aNSCs) and its role in adult neurogenesis. Here we show that ablation of Fmrp in aNSCs by inducible gene recombination leads to reduced hippocampal neurogenesis in vitro and in vivo, as well as markedly impairing hippocampus-dependent learning in mice. Conversely, restoration of Fmrp expression specifically in aNSCs rescues these learning deficits in Fmrp-deficient mice. These data suggest that defective adult neurogenesis may contribute to the learning impairment seen in FXS, and these learning deficits can be rectified by delayed restoration of Fmrp specifically in aNSCs.  相似文献   

8.
The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.  相似文献   

9.
Presenilin-1 (PS1), the catalytic core of the aspartyl protease γ-secretase, regulates adult neurogenesis. However, it is not clear whether the role of neurogenesis in hippocampal learning and memory is PS1-dependent, or whether PS1 loss of function in adult hippocampal neurogenesis can cause learning and memory deficits. Here we show that downregulation of PS1 in hippocampal neural progenitor cells causes progressive deficits in pattern separation and novelty exploration. New granule neurons expressing reduced PS1 levels exhibit decreased dendritic branching and dendritic spines. Further, they exhibit reduced survival. Lastly, we show that PS1 effect on neurogenesis is mediated via β-catenin phosphorylation and notch signaling. Together, these observations suggest that impairments in adult neurogenesis induce learning and memory deficits and may play a role in the cognitive deficits observed in Alzheimer’s disease.  相似文献   

10.
Bats are the only flying mammals and have well developed navigation abilities for 3D-space. Even bats with comparatively small home ranges cover much larger territories than rodents, and long-distance migration by some species is unique among small mammals. Adult proliferation of neurons, i.e., adult neurogenesis, in the dentate gyrus of rodents is thought to play an important role in spatial memory and learning, as indicated by lesion studies and recordings of neurons active during spatial behavior. Assuming a role of adult neurogenesis in hippocampal function, one might expect high levels of adult neurogenesis in bats, particularly among fruit- and nectar-eating bats in need of excellent spatial working memory. The dentate gyrus of 12 tropical bat species was examined immunohistochemically, using multiple antibodies against proteins specific for proliferating cells (Ki-67, MCM2), and migrating and differentiating neurons (Doublecortin, NeuroD). Our data show a complete lack of hippocampal neurogenesis in nine of the species (Glossophaga soricina, Carollia perspicillata, Phyllostomus discolor, Nycteris macrotis, Nycteris thebaica, Hipposideros cyclops, Neoromicia rendalli, Pipistrellus guineensis, and Scotophilus leucogaster), while it was present at low levels in three species (Chaerephon pumila, Mops condylurus and Hipposideros caffer). Although not all antigens were recognized in all species, proliferation activity in the subventricular zone and rostral migratory stream was found in all species, confirming the appropriateness of our methods for detecting neurogenesis. The small variation of adult hippocampal neurogenesis within our sample of bats showed no indication of a correlation with phylogenetic relationship, foraging strategy, type of hunting habitat or diet. Our data indicate that the widely accepted notion of adult neurogenesis supporting spatial abilities needs to be considered carefully. Given their astonishing longevity, certain bat species may be useful subjects to compare adult neurogenesis with other long-living species, such as monkeys and humans, showing low rates of adult hippocampal neurogenesis.  相似文献   

11.
Primary cilia are microtubule-based organelles present on most cells that regulate many physiological processes, ranging from maintaining energy homeostasis to renal function. However, the role of these structures in the regulation of behavior remains unknown. To study the role of cilia in behavior, we employ mouse models of the human ciliopathy, Bardet-Biedl Syndrome (BBS). Here, we demonstrate that BBS mice have significant impairments in context fear conditioning, a form of associative learning. Moreover, we show that postnatal deletion of BBS gene function, as well as congenital deletion, specifically in the forebrain, impairs context fear conditioning. Analyses indicated that these behavioral impairments are not the result of impaired hippocampal long-term potentiation. However, our results indicate that these behavioral impairments are the result of impaired hippocampal neurogenesis. Two-week treatment with lithium chloride partially restores the proliferation of hippocampal neurons which leads to a rescue of context fear conditioning. Overall, our results identify a novel role of cilia genes in hippocampal neurogenesis and long-term context fear conditioning.  相似文献   

12.
Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4–6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.  相似文献   

13.
Calcineurin is a calcium-dependent protein phosphatase that has been implicated in various aspects of synaptic plasticity. By using conditional gene-targeting techniques, we created mice in which calcineurin activity is disrupted specifically in the adult forebrain. At hippocampal Schaffer collateral-CA1 synapses, LTD was significantly diminished, and there was a significant shift in the LTD/LTP modification threshold in mutant mice. Strikingly, although performance was normal in hippocampus-dependent reference memory tasks, including contextual fear conditioning and the Morris water maze, the mutant mice were impaired in hippocampus-dependent working and episodic-like memory tasks, including the delayed matching-to-place task and the radial maze task. Our results define a critical role for calcineurin in bidirectional synaptic plasticity and suggest a novel mechanistic distinction between working/episodic-like memory and reference memory.  相似文献   

14.
The brain of many species including humans, harbors stem cells that continue to generate new neurons up into adulthood. This form of structural plasticity occurs in a limited number of brain regions, i.e. the subventricular zone and the hippocampal dentate gyrus and is regulated by environmental and hormonal factors. In this minireview, we provide an overview of the effects of stress and glucocorticoid hormones on adult hippocampal neurogenesis and discuss how these effects may be relevant for cognitive function and possibly, brain disease. While its exact functional role remains elusive, adult neurogenesis has been implicated in learning and memory, fear and mood regulation and recently, adult-born neurons were found to be involved in specific cognitive functions such as pattern separation (i.e. the ability to form unique memory representations) and cognitive flexibility. The process of adult neurogenesis is influenced by several factors; whereas e.g. exercise stimulates, exposure to stress and stress hormones generally inhibit neurogenesis. Effects of acute, mild stress are generally short-lasting and recover quickly, but chronic or severe forms of stress can induce lasting reductions in adult neurogenesis. Some of the inhibitory effects of stress can be rescued by exercise, by allowing a period of recovery from stress, by drugs that target the stress system, or by some, but not all, antidepressants. Stress may, partly through its effects on adult neurogenesis, alter structure and plasticity of the hippocampal circuit. This can lead to subsequent changes in stress responsivity and aspects of memory processing, which may be particularly relevant for stress related psychopathology or brain diseases that involve perturbed memory processing.  相似文献   

15.
We previously demonstrated that degus (Octodon degus), which are a species of small caviomorph rodents, could be trained to use a T-shaped rake as a hand tool to expand accessible spaces. To elucidate the neurobiological underpinnings of this higher brain function, we compared this tool use learning task with a simple spatial (radial maze) memory task and investigated the changes that were induced in the hippocampal neural circuits known to subserve spatial perception and learning. With the exposure to an enriched environment in home cage, adult neurogenesis in the dentate gyrus of the hippocampus was augmented by tool use learning, but not radial maze learning, when compared to control conditions. Furthermore, the proportion of new synapses formed in the CA3 region of the hippocampus, the target area for projections of mossy fiber axons emanating from newborn neurons, was specifically increased by tool use learning. Thus, active tool use behavior by rodents, learned through multiple training sessions, requires the hippocampus to generate more novel neurons and synapses than spatial information processing in radial maze learning.  相似文献   

16.
Neurogenesis in a rat model of age-related cognitive decline   总被引:5,自引:0,他引:5  
Bizon JL  Lee HJ  Gallagher M 《Aging cell》2004,3(4):227-234
Age-related decrements in hippocampal neurogenesis have been suggested as a basis for learning impairment during aging. In the current study, a rodent model of age-related cognitive decline was used to evaluate neurogenesis in relation to hippocampal function. New hippocampal cell survival was assessed approximately 1 month after a series of intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Correlational analyses between individual measures of BrdU-positive cells and performance on the Morris water maze task provided no indication that this measure of neurogenesis was more preserved in aged rats with intact cognitive abilities. On the contrary, among aged rats, higher numbers of BrdU-positive cells in the granule cell layer were associated with a greater degree of impairment on the learning task. Double-labelling studies confirmed that the majority of the BrdU+ cells were of the neuronal phenotype; the proportion of differentiated neurons was not different across a broad range of cognitive abilities. These data demonstrate that aged rats that maintain cognitive function do so despite pronounced reductions in hippocampal neurogenesis. In addition, these findings suggest the interesting possibility that impaired hippocampal function is associated with greater survival of newly generated hippocampal neurons at advanced ages.  相似文献   

17.
Brain‐derived neurotrophic factor (BDNF) signaling plays a major role in the regulation of hippocampal neurogenesis in the adult brain. While the majority of studies suggest that this is due to its effect on the survival and differentiation of newborn neurons, it remains unclear whether this signaling directly regulates neural precursor cell (NPC) activity and which of its two receptors, TrkB or the p75 neurotrophin receptor (p75NTR) mediates this effect. Here, we examined both the RNA and protein expression of these receptors and found that TrkB but not p75NTR receptors are expressed by hippocampal NPCs in the adult mouse brain. Using a clonal neurosphere assay, we demonstrate that pharmacological blockade of TrkB receptors directly activates a distinct subpopulation of NPCs. Moreover, we show that administration of ANA‐12, a TrkB‐selective antagonist, in vivo either by systemic intraperitoneal injection or by direct infusion within the hippocampus leads to an increase in the production of new neurons. In contrast, we found that NPC‐specific knockout of p75NTR had no effect on the proliferation of NPCs and did not alter neurogenesis in the adult hippocampus. Collectively, these results demonstrate a novel role of TrkB receptors in directly regulating the activity of a subset of hippocampal NPCs and suggest that the transient blockade of these receptors could be used to enhance adult hippocampal neurogenesis.  相似文献   

18.
Depression and anxiety involve hippocampal dysfunction, but the specific relationship between these mood disorders and adult hippocampal dentate gyrus neurogenesis remains unclear. In both humans with MDD and rodent models of depression, administration of antidepressants increases DG progenitor and granule cell number, yet rodents with induced ablation of DG neurogenesis typically do not demonstrate depressive- or anxiety-like behaviors. The conflicting data may be explained by the varied duration and degree to which adult neurogenesis is reduced in different rodent neurogenesis ablation models. In order to test this hypothesis we examined how a transient–rather than permanent–inducible reduction in neurogenesis would alter depressive- and anxiety-like behaviors. Transgenic Nestin-CreERT2/floxed diphtheria toxin fragment A (DTA) mice (Cre+DTA+) and littermates (Cre+DTA-; control) were given tamoxifen (TAM) to induce recombination and decrease nestin-expressing stem cells and their progeny. The decreased neurogenesis was transient: 12 days post-TAM Cre+DTA+ mice had fewer DG proliferating Ki67+ cells and fewer DCX+ neuroblasts/immature neurons relative to control, but 30 days post-TAM Cre+DTA+ mice had the same DCX+ cell number as control. This ability of DG neurogenesis to recover after partial ablation also correlated with changes in behavior. Relative to control, Cre+DTA+ mice tested between 12–30 days post-TAM displayed indices of a stress-induced anxiety phenotype–longer latency to consume highly palatable food in the unfamiliar cage in the novelty-induced hypophagia test, and a depression phenotype–longer time of immobility in the tail suspension test, but Cre+DTA+ mice tested after 30 days post-TAM did not. These findings suggest a functional association between adult neurogenesis and stress induced anxiety- and depressive-like behaviors, where induced reduction in DCX+ cells at the time of behavioral testing is coupled with stress-induced anxiety and a depressive phenotype, and recovery of DCX+ cell number corresponds to normalization of these behaviors.  相似文献   

19.
The role of adult hippocampal neurogenesis in spatial learning remains a matter of debate. Here, we show that spatial learning modifies neurogenesis by inducing a cascade of events that resembles the selective stabilization process characterizing development. Learning promotes survival of relatively mature neurons, apoptosis of more immature cells, and finally, proliferation of neural precursors. These are three interrelated events mediating learning. Thus, blocking apoptosis impairs memory and inhibits learning-induced cell survival and cell proliferation. In conclusion, during learning, similar to the selective stabilization process, neuronal networks are sculpted by a tightly regulated selection and suppression of different populations of newly born neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号