首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant roots show an impressive degree of plasticity in adapting their branching patterns to ever-changing growth conditions. An important mechanism underlying this adaptation ability is the interaction between hormonal and developmental signals. Here, we analyze the interaction of jasmonate with auxin to regulate lateral root (LR) formation through characterization of an Arabidopsis thaliana mutant, jasmonate-induced defective lateral root1 (jdl1/asa1-1). We demonstrate that, whereas exogenous jasmonate promotes LR formation in wild-type plants, it represses LR formation in jdl1/asa1-1. JDL1 encodes the auxin biosynthetic gene ANTHRANILATE SYNTHASE α1 (ASA1), which is required for jasmonate-induced auxin biosynthesis. Jasmonate elevates local auxin accumulation in the basal meristem of wild-type roots but reduces local auxin accumulation in the basal meristem of mutant roots, suggesting that, in addition to activating ASA1-dependent auxin biosynthesis, jasmonate also affects auxin transport. Indeed, jasmonate modifies the expression of auxin transport genes in an ASA1-dependent manner. We further provide evidence showing that the action mechanism of jasmonate to regulate LR formation through ASA1 differs from that of ethylene. Our results highlight the importance of ASA1 in jasmonate-induced auxin biosynthesis and reveal a role for jasmonate in the attenuation of auxin transport in the root and the fine-tuning of local auxin distribution in the root basal meristem.  相似文献   

2.
生长素的生物合成、代谢、受体和极性运输1   总被引:4,自引:2,他引:2  
主要介绍生长素的生物合成、代谢、受体,生长素极性运输和生长素响应基因等方面的研究近况.  相似文献   

3.
4.
5.
6.
Plant clathrin-mediated membrane trafficking is involved in many developmental processes as well as in responses to environmental cues. Previous studies have shown that clathrin-mediated endocytosis of the plasma membrane (PM) auxin transporter PIN-FORMED1 is regulated by the extracellular auxin receptor AUXIN BINDING PROTEIN1 (ABP1). However, the mechanisms by which ABP1 and other factors regulate clathrin-mediated trafficking are poorly understood. Here, we applied a genetic strategy and time-resolved imaging to dissect the role of clathrin light chains (CLCs) and ABP1 in auxin regulation of clathrin-mediated trafficking in Arabidopsis thaliana. Auxin was found to differentially regulate the PM and trans-Golgi network/early endosome (TGN/EE) association of CLCs and heavy chains (CHCs) in an ABP1-dependent but TRANSPORT INHIBITOR RESPONSE1/AUXIN-BINDING F-BOX PROTEIN (TIR1/AFB)-independent manner. Loss of CLC2 and CLC3 affected CHC membrane association, decreased both internalization and intracellular trafficking of PM proteins, and impaired auxin-regulated endocytosis. Consistent with these results, basipetal auxin transport, auxin sensitivity and distribution, and root gravitropism were also found to be dramatically altered in clc2 clc3 double mutants, resulting in pleiotropic defects in plant development. These results suggest that CLCs are key regulators in clathrin-mediated trafficking downstream of ABP1-mediated signaling and thus play a critical role in membrane trafficking from the TGN/EE and PM during plant development.  相似文献   

7.

Background

N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.

Methodology/Principal Findings

Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.

Conclusion/Significance

NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.  相似文献   

8.
Although it is generally accepted that auxin is important for the patterning of the female reproductive organ, the gynoecium, the flow as well as the temporal and spatial actions of auxin have been difficult to show during early gynoecial development. The primordium of the Arabidopsis (Arabidopsis thaliana) gynoecium is composed of two congenitally fused, laterally positioned carpel primordia bisected by two medially positioned meristematic regions that give rise to apical and internal tissues, including the ovules. This organization makes the gynoecium one of the most complex plant structures, and as such, the regulation of its development has remained largely elusive. By determining the spatiotemporal expression of auxin response reporters and localization of PINFORMED (PIN) auxin efflux carriers, we have been able to create a map of the auxin flow during the earliest stages of gynoecial primordium initiation and outgrowth. We show that transient disruption of polar auxin transport (PAT) results in ectopic auxin responses, broadened expression domains of medial tissue markers, and disturbed lateral preprocambium initiation. Based on these results, we propose a new model of auxin-mediated gynoecial patterning, suggesting that valve outgrowth depends on PIN1-mediated lateral auxin maxima as well as subsequent internal auxin drainage and provascular formation, whereas the growth of the medial domains is less dependent on correct PAT. In addition, PAT is required to prevent the lateral domains, at least in the apical portion of the gynoecial primordium, from obtaining medial fates.The gynoecium is a highly complex assembly comprised of different tissues that work together to support female reproductive competence in angiosperms. As such, studies of the regulatory networks controlling gynoecial development are essential to not only understand plant reproduction, but also increase our knowledge about intertissue-specific cross talk and coordinated development. A gynoecium is composed of one or more carpels, which may have evolved by the invagination of an ancestral leaf-like structure carrying spores along its edges (for review, see Hawkins and Liu, 2014). The Arabidopsis (Arabidopsis thaliana) gynoecium is a bilateral structure composed of two congenitally fused carpels likely derived from the fusion of two leaf-like structures in which the central domains became the lateral valves and the peripheral meristematic margins carrying the ovules became the medial tissues (Hawkins and Liu, 2014). It has been suggested that the medial domains of the Arabidopsis gynoecial primordium are partially differentiated quasi-meristems with maintained meristematic characteristics allowing for prolonged proliferation (Girin et al., 2009). Accordingly, many lateral domain-specific genes are associated with leaf development, while several genes active in the medial domains are related to meristematic activity (Dinneny et al., 2005; Alonso-Cantabrana et al., 2007; González-Reig et al., 2012).Arabidopsis gynoecium development has been described and reviewed extensively (Sessions, 1997; Bowman et al., 1999; Ferrándiz et al., 1999; Balanzá et al., 2006; Østergaard, 2009; Sundberg and Ferrandíz, 2009) and is summarized in Figure 1. Briefly, at early floral stage 5 (stages according to Smyth et al., 1990), after the initiation of outer floral organs, the remaining floral meristem becomes dome shaped. Although the meristem still appears radially symmetric, it is considered to have a medial plane (black dashed lines in Fig. 1) facing the inflorescence meristem and a lateral plane (white dashed lines in Fig. 1) perpendicular to the medial plane. The terminal floral meristem subsequently broadens in the lateral plane, resulting in a bilateral flattened plate (late floral stage 5). At floral stage 6, differential growth has resulted in a central invagination positioned along the lateral plane, and differential gene expressions indicate that initial patterning events distinguishing medial and lateral domains as well as inner (adaxial) and outer (abaxial) tissues have initiated (Bowman et al., 1999). By the end of floral stage 7, the adaxial medial tissues grow toward each other, forming two medial ridges, also called carpel margin meristems (CMMs). The CMMs will give rise to placentae and subsequently ovule primordia at floral stage 8 (Schneitz et al., 1995). By stage 9, the major tissue types of the mature gynoecium become morphologically distinct as the style and stigmatic papillae start to differentiate. Cell differentiation and cell expansion continue during stages 10 to 12, and the gynoecium is fully mature and ready to accept pollen approximately 10 d after it started to initiate from the terminal floral meristem.Open in a separate windowFigure 1.Arabidopsis gynoecium development. Transmitted light confocal images of the remaining floral meristem (stage [st] 5) and the first stages of gynoecial primordia development (stages 6 and 7), and false-colored DIC images of floral stages 8 to 12 gynoecia along a developmental time scale showing the time in days after floral initiation at the end of each stage. Early and late stage 5 as well as upper images at floral stages 6 and 7 are viewed from above. Lower floral stage 6 image is viewed from the lateral side. Lower images of floral stages 7 to 12 gynoecia are viewed from the medial side. Upper images of floral stages 8 to 12 gynoecia show transverse sections. Stages and time scale are adapted after Smyth et al. (1990) and Sessions (1997). White dashed lines indicate lateral plane, black dashed lines indicate medial plane, arrowheads indicate lateral crease, and asterisks indicate CMM. Bars = 10 µm (stages 5–7), 25 µm (stages 8–10), and 50 µm (stages 11 and 12).It is commonly accepted that the plant hormone auxin is important for gynoecium development, and several models have been put forward to explain this on a mechanistic level (Nemhauser et al., 2000; Østergaard, 2009; Sundberg and Østergaard, 2009; Nole-Wilson et al., 2010; Marsch-Martínez et al., 2012; Hawkins and Liu, 2014). However, we still lack a clear picture of the auxin dynamics and response sites during the earliest developmental stages when the major patterning decisions are made. During lateral organ development, instructive auxin peaks or gradients are formed by site-specific auxin biosynthesis and polar auxin transport (PAT), which results in procambium formation, organ outgrowth, and tissue differentiation (Sachs, 1969; Benková et al., 2003; Mattsson et al., 2003; Heisler et al., 2005; Scarpella et al., 2006; Furutani et al., 2014). The plasma membrane-bound PINFORMED (PIN) proteins as well as at least four members of the ATP-binding cassette subfamily B (ABCB)/MULTI-DRUG RESISTANT/P-GLYCOPROTEIN (PGP) protein family show auxin efflux capacity (for review, see Habets and Offringa, 2014). The PIN proteins are often polarly localized at the plasma membrane, whereas the ABCB/PGP proteins are generally localized apolarly. Therefore, the PINs are largely responsible for the net directional flow of auxin, while the ABCB proteins most likely contribute to PAT by regulating the effective cellular auxin available for polar transport (Mravec et al., 2008; Wang et al., 2013). The phytotropin 1-N-naphtylphthalamic acid (NPA) is a well established and widely used PAT inhibitor, although its exact mode of action is obscure (Petrásek et al., 2003). NPA treatment mimics the pin-like shoot phenotype of pin1 loss-of-function mutants (Okada et al., 1991), and even though NPA appears not to directly interact with PIN proteins, it may influence subcellular dynamics and has been shown to bind to ABCB family members, thereby blocking their transport capacity (Noh et al., 2001; Murphy et al., 2002; Geisler et al., 2003; Nagashima et al., 2008; Kim et al., 2010). This suggests that NPA may reduce PAT in part by restricting the amount of auxin available for PIN-mediated polar transport.Although the pin1-1 knockout mutant rarely produces flowers (Okada et al., 1991), gynoecia of the hypomorphic pin1-5 mutant form elongated styles and reduced or even missing carpels (Bennett et al., 1995; Sohlberg et al., 2006). Auxin biosynthesis mutants also produce disproportionate gynoecial tissues (Cheng et al., 2006; Stepanova et al., 2008), suggesting that auxin peaks and fluxes are important for the coordinated development of gynoecial domains. However, because the gynoecium is the last organ to initiate from the floral meristem, the abnormal gynoecial development in auxin-related mutants may result from developmental defects that occurred prior to gynoecium formation. By transiently treating inflorescences with NPA, Nemhauser et al. (2000) showed that PAT in the gynoecial primordia is important for differential development. However, the whole gynoecium was regarded as one entity with apical-basal polarity, and the possibility that the lateral carpels and the medial meristematic tissues could respond differently to the treatment was never discussed. Thus, where and how NPA affects PAT-regulated development has remained elusive.To understand how local auxin activities influence the outgrowth and patterning events of young gynoecial primordia, we determined the localization of PIN and PGP auxin efflux proteins and the resulting auxin response domains. This allowed us to map the directional flow and auxin response peaks during the earliest stages of gynoecium development. In addition, we induced transient disruptions in PAT and assessed the response of auxin signaling and domain-specific markers to establish how auxin signaling and vascular, lateral, and medial domains are affected by alterations in PAT. Based on our data, we propose a new model for auxin-regulated gynoecial patterning in which the medial versus lateral identity is dependent on correct auxin localization, and subsequent carpel valve outgrowth is dependent on transport-mediated apical auxin drainage.  相似文献   

9.
10.
11.
The regular arrangement of leaves and flowers around a plant''s stem is a fascinating expression of biological pattern formation. Based on current models, the spacing of lateral shoot organs is determined by transient local auxin maxima generated by polar auxin transport, with existing primordia draining auxin from their vicinity to restrict organ formation close by. It is unclear whether this mechanism encodes not only spatial information but also temporal information about the plastochron (i.e., the interval between the formation of successive primordia). Here, we identify the Arabidopsis thaliana F-box protein SLOW MOTION (SLOMO) as being required for a normal plastochron. SLOMO interacts genetically with components of polar auxin transport, and mutant shoot apices contain less free auxin. However, this reduced auxin level at the shoot apex is not due to increased polar auxin transport down the stem, suggesting that it results from reduced synthesis. Independently reducing the free auxin level in plants causes a similar lengthening of the plastochron as seen in slomo mutants, suggesting that the reduced auxin level in slomo mutant shoot apices delays the establishment of the next auxin maximum. SLOMO acts independently of other plastochron regulators, such as ALTERED MERISTEM PROGRAM1 or KLUH/CYP78A5. We propose that SLOMO contributes to auxin homeostasis in the shoot meristem, thus ensuring a normal rate of the formation of auxin maxima and organ initiation.  相似文献   

12.
13.
How instructive signals are translated into robust and predictable changes in growth is a central question in developmental biology. Recently, much interest has centered on the feedback between chemical instructions and mechanical changes for pattern formation in development. In plants, the patterned arrangement of aerial organs, or phyllotaxis, is instructed by the phytohormone auxin; however, it still remains to be seen how auxin is linked, at the apex, to the biochemical and mechanical changes of the cell wall required for organ outgrowth. Here, using Atomic Force Microscopy, we demonstrate that auxin reduces tissue rigidity prior to organ outgrowth in the shoot apex of Arabidopsis thaliana, and that the de-methyl-esterification of pectin is necessary for this reduction. We further show that development of functional organs produced by pectin-mediated ectopic wall softening requires auxin signaling. Lastly, we demonstrate that coordinated localization of the auxin transport protein, PIN1, is disrupted in a naked-apex produced by increasing cell wall rigidity. Our data indicates that a feedback loop between the instructive chemical auxin and cell wall mechanics may play a crucial role in phyllotactic patterning.  相似文献   

14.
MicroRNAs function in a range of developmental processes. Here, we demonstrate that miR847 targets the mRNA of the auxin/indole acetic acid (Aux/IAA) repressor-encoding gene IAA28 for cleavage. The rapidly increased accumulation of miR847 in Arabidopsis thaliana coincided with reduced IAA28 mRNA levels upon auxin treatment. This induction of miR847 by auxin was abolished in auxin receptor tir1-1 and auxin-resistant axr1-3 mutants. Further analysis demonstrates that miR847 functions as a positive regulator of auxin-mediated lateral organ development by cleaving IAA28 mRNA. Importantly, the ectopic expression of miR847 increases the expression of cell cycle genes as well as the neoplastic activity of leaf cells, prolonging later-stage rosette leaf growth and producing leaves with serrated margins. Moreover, both miR847 and IAA28 mRNAs are specifically expressed in marginal meristems of rosette leaves and lateral root initiation sites. Our data indicate that auxin-dependent induction of miR847 positively regulates meristematic competence by clearing IAA28 mRNA to upregulate auxin signaling, thereby determining the duration of cell proliferation and lateral organ growth in Arabidopsis. IAA28 mRNA encodes an Aux/IAA repressor protein, which is degraded through the proteasome in response to auxin. Altered signal sensitization to IAA28 mRNA levels, together with targeted IAA28 degradation, ensures a robust signal derepression.  相似文献   

15.
16.
17.
18.
Abstract: Compared to wild type, the lazy mutant in Oryza sati-va L. shows a reduced gravitropic response. In order to locate the lesion in the stimulus-response chain, coleoptile segments of lazy rice were investigated with respect to auxin transport. Gravity-induced lateral movement of radiolabelled indoleacetic acid (IAA) was strongly inhibited by the lazy mutation compared to wild type while uptake and longitudinal transport of IAA, as well as amyloplast sedimentation, were not significantly affected. These findings suggest that LAZY controls a step in the signalling chain between statoliths and auxin secretion.  相似文献   

19.
Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.The primary walls of growing plant cells are largely constructed of cellulose and noncellulosic matrix polysaccharides that include hemicelluloses and pectins (Carpita and Gibeaut, 1993; Somerville et al., 2004; Cosgrove, 2005). Xyloglucan (XyG) is the most abundant hemicellulose in the primary walls of eudicots and is composed of a β-1,4-glucan backbone with side chains containing Xyl, Gal, and Fuc (Park and Cosgrove, 2015). XyG is synthesized in the Golgi apparatus before being secreted to the apoplast, and its biosynthesis requires several glycosyltransferases, including β-1,4-glucosyltransferase, α-1,6-xylosyltransferase, β-1,2-galactosyltransferase, and α-1,2-fucosyltransferase activities (Zabotina, 2012). Arabidopsis (Arabidopsis thaliana) XYLOGLUCAN XYLOSYLTRANSFERASE1 (XXT1) and XXT2 display xylosyltransferase activity in vitro (Faik et al., 2002; Cavalier and Keegstra, 2006), and strikingly, no XyG is detectable in the walls of xxt1 xxt2 double mutants (Cavalier et al., 2008; Park and Cosgrove, 2012a), suggesting that the activity of XXT1 and XXT2 are required for XyG synthesis, delivery, and/or stability.Much attention has been paid to the interactions between cellulose and XyG over the past 40 years. Currently, there are several hypotheses concerning the nature of these interactions (Park and Cosgrove, 2015). One possibility is that XyGs bind directly to cellulose microfibrils (CMFs). Recent data indicating that crystalline cellulose cores are surrounded with hemicelluloses support this hypothesis (Dick-Pérez et al., 2011). It is also possible that XyG acts as a spacer-molecule to prevent CMFs from aggregating in cell walls (Anderson et al., 2010) or as an adapter to link cellulose with other cell wall components, such as pectin (Cosgrove, 2005; Cavalier et al., 2008). XyG can be covalently linked to pectin (Thompson and Fry, 2000; Popper and Fry, 2005, 2008), and NMR data demonstrate that pectins and cellulose might interact to a greater extent than XyG and cellulose in native walls (Dick-Pérez et al., 2011). Alternative models exist for how XyG-cellulose interactions influence primary wall architecture and mechanics. One such model posits that XyG chains act as load-bearing tethers that bind to CMFs in primary cell walls to form a cellulose-XyG network (Carpita and Gibeaut, 1993; Pauly et al., 1999; Somerville et al., 2004; Cosgrove, 2005). However, results have been accumulating against this tethered network model, leading to an alternative model in which CMFs make direct contact, in some cases mediated by a monolayer of xyloglucan, at limited cell wall sites dubbed “biomechanical hotspots,” which are envisioned as the key sites of cell wall loosening during cell growth (Park and Cosgrove, 2012a; Wang et al., 2013; Park and Cosgrove, 2015). Further molecular, biochemical, and microscopy experiments are required to help distinguish which aspects of the load-bearing, spacer/plasticizer, and/or hotspot models most accurately describe the functions of XyG in primary walls.Cortical microtubules (MTs) direct CMF deposition by guiding cellulose synthase complexes in the plasma membrane (Baskin et al., 2004; Paredez et al., 2006; Emons et al., 2007; Sánchez-Rodriguez et al., 2012), and the patterned deposition of cellulose in the wall in turn can help determine plant cell anisotropic growth and morphogenesis (Baskin, 2005). Disruption of cortical MTs by oryzalin, a MT-depolymerizing drug, alters the alignment of CMFs, suggesting that MTs contribute to CMF organization (Baskin et al., 2004). CELLULOSE SYNTHASE (CESA) genes, including CESA1, CESA3, and CESA6, are required for normal CMF synthesis in primary cell walls (Kohorn et al., 2006; Desprez et al., 2007), and accessory proteins such as COBRA function in cellulose production (Lally et al., 2001). Live-cell imaging from double-labeled YFP-CESA6; CFP-ALPHA-1 TUBULIN (TUA1) Arabidopsis seedlings provides direct evidence that cortical MTs determine the trajectories of cellulose synthesis complexes (CSCs) and patterns of cellulose deposition (Paredez et al., 2006). Additionally, MT organization affects the rotation of cellulose synthase trajectories in the epidermal cells of Arabidopsis hypocotyls (Chan et al., 2010). Recently, additional evidence for direct guidance of CSCs by MTs has been provided by the identification of CSI1/POM2, which binds to both MTs and CESAs (Bringmann et al., 2012; Li et al., 2012). MICROTUBULE ORGANIZATION1 (MOR1) is essential for cortical MT organization (Whittington et al., 2001), but disruption of cortical MTs in the mor1 mutant does not greatly affect CMF organization (Sugimoto et al., 2003), and oryzalin treatment does not abolish CSC motility (Paredez et al., 2006).Conversely, the organization of cortical MTs can be affected by cellulose synthesis. Treatment with isoxaben, a cellulose synthesis inhibitor, results in disorganized cortical MTs in tobacco cells, suggesting that inhibition of cellulose synthesis affects MT organization (Fisher and Cyr, 1998), and treatment with 2,6-dichlorobenzonitrile, another cellulose synthesis inhibitor, alters MT organization in mor1 plants (Himmelspach et al., 2003). Cortical MT orientation in Arabidopsis roots is also altered in two cellulose synthesis-deficient mutants, CESA652-isx and kor1-3, suggesting that CSC activity can affect MT arrays (Paredez et al., 2008). Together, these results point to a bidirectional relationship between cellulose synthesis/patterning and MT organization.MTs influence plant organ morphology, but the detailed mechanisms by which they do so are incompletely understood. The dynamics and stability of cortical MTs are also affected by MT-associated proteins (MAPs). MAP18 is a MT destabilizing protein that depolymerizes MTs (Wang et al., 2007), MAP65-1 functions as a MT crosslinker, and MAP70-1 functions in MT assembly (Korolev et al., 2005; Lucas et al., 2011). MAP70-5 stabilizes existing MTs to maintain their length, and its overexpression induces right-handed helical growth (Korolev et al., 2007); likewise, MAP20 overexpression results in helical cell twisting (Rajangam et al., 2008). CLASP promotes microtubule stability, and its mutant is hypersensitive to microtubule-destabilizing drug oryzalin (Ambrose et al., 2007). KATANIN1 (KTN1) is a MT-severing protein that can sever MTs into short fragments and promote the formation of thick MT bundles that ultimately depolymerize (Stoppin-Mellet et al., 2006), and loss of KTN1 function results in reduced responses to mechanical stress (Uyttewaal et al., 2012). In general, cortical MT orientation responds to mechanical signals and can be altered by applying force directly to the shoot apical meristem (Hamant et al., 2008). The application of external mechanical pressure to Arabidopsis leaves also triggers MT bundling (Jacques et al., 2013). Kinesins, including KINESIN-13A (KIN-13A) and FRAGILE FIBER1 (FRA1), have been implicated in cell wall synthesis (Cheung and Wu, 2011; Fujikura et al., 2014). The identification of cell wall receptors and sensors is beginning to reveal how plant cell walls sense and respond to external signals (Humphrey et al., 2007; Ringli, 2010); some of them, such as FEI1, FEI2, THESEUS1 (THE1), FERONIA (FER), HERCULES RECEPTOR KINASE1 (HERK1), WALL ASSOCIATED KINASE1 (WAK1), WAK2, and WAK4, have been characterized (Lally et al., 2001; Decreux and Messiaen, 2005; Kohorn et al., 2006; Xu et al., 2008; Guo et al., 2009; Cheung and Wu, 2011). However, the relationships between wall integrity, cytoskeletal dynamics, and wall synthesis have not yet been fully elucidated.In this study, we analyzed CMF patterning, MT patterning and dynamics, and cellulose biosynthesis in the Arabidopsis xxt1 xxt2 double mutant that lacks detectable XyG and displays altered growth (Cavalier et al., 2008; Park and Cosgrove, 2012a). To investigate whether and how XyG deficiency affects the organization of CMFs and cortical MTs, we observed CMF patterning in xxt1 xxt2 mutants and Col (wild-type) controls using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and confocal microscopy (Hodick and Kutschera, 1992; Derbyshire et al., 2007; Anderson et al., 2010; Zhang et al., 2014). We also generated transgenic Col and xxt1 xxt2 lines expressing GFP-MAP4 (Marc et al., 1998) and GFP-CESA3 (Desprez et al., 2007), and analyzed MT arrays and cellulose synthesis using live-cell imaging. Our results show that the organization of CMFs is altered, that MTs in xxt1 xxt2 mutants are aberrantly organized and are more sensitive to external mechanical pressure and the MT-depolymerizing drug oryzalin, and that cellulose synthase motility and cellulose content are decreased in xxt1 xxt2 mutants. Furthermore, real-time quantitative RT-PCR measurements indicate that the enhanced sensitivity of cortical MTs to mechanical stress and oryzalin in xxt1 xxt2 plants might be due to altered expression of MT-stabilizing and wall receptor genes. Together, these data provide insights into the connections between the functions of XyG in wall assembly, the mechanical integrity of the cell wall, cytoskeleton-mediated cellular responses to deficiencies in wall biosynthesis, and cell and tissue morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号