首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The intestine of Caenorhabditis elegans is an epithelial tube consisting of only 20 cells and is derived clonally from a single embryonic blastomere called E. We describe the cellular events that shape the intestine. These events include cytoplasmic polarization of cells in the intestinal primordium, the intercalation of specific sets of cells, the generation of an extracellular cavity within the primordium, and adherens junction formation. The polarization of the intestinal primordium is associated with the generation of an asymmetric microtubule cytoskeleton, and microtubule function plays a role in subsequent cell polarity. We show that an isolated E blastomere is capable of generating polarized intestinal cells, indicating that some of the major events in intestinal organogenesis do not depend upon interactions with surrounding tissues. We compare and contrast intestinal organogenesis with some of the basic steps in development of a second epithelial organ, the pharynx, and suggest how these differences lead to organs with distinct shapes.  相似文献   

3.
The development of many animal organs involves a mesenchymal to epithelial transition, in which cells develop and coordinate polarity through largely unknown mechanisms. The C. elegans pharynx, which is an epithelial tube in which cells polarize around a central lumen, provides a simple system with which to understand the coordination of epithelial polarity. We show that cell fate regulators cause pharyngeal precursor cells to group into a bilaterally symmetric, rectangular array of cells called the double plate. The double plate cells polarize with apical localization of the PAR-3 protein complex, then undergo apical constriction to form a cylindrical cyst. We show that laminin, but not other basement membrane components, orients the polarity of the double plate cells. Our results provide in vivo evidence that laminin has an early role in cell polarity that can be distinguished from its later role in basement membrane integrity.  相似文献   

4.
Metazoan internal organs are assembled from polarized tubular epithelia that must set aside an apical membrane domain as a lumenal surface. In a global Caenorhabditis elegans tubulogenesis screen, interference with several distinct fatty-acid-biosynthetic enzymes transformed a contiguous central intestinal lumen into multiple ectopic lumens. We show that multiple-lumen formation is caused by apicobasal polarity conversion, and demonstrate that in situ modulation of lipid biosynthesis is sufficient to reversibly switch apical domain identities on growing membranes of single post-mitotic cells, shifting lumen positions. Follow-on targeted lipid-biosynthesis pathway screens and functional genetic assays were designed to identify a putative single causative lipid species. They demonstrate that fatty-acid biosynthesis affects polarity through sphingolipid synthesis, and reveal ceramide glucosyltransferases (CGTs) as end-point biosynthetic enzymes in this pathway. Our findings identify glycosphingolipids, CGT products and obligate membrane lipids, as critical determinants of in vivo polarity and indicate that they sort new components to the expanding apical membrane.  相似文献   

5.
Epithelial cells cultured within collagen and laminin gels proliferate to form hollow and polarized spherical structures, recapitulating the formation of a rudimentary epithelial organ. However, the contributions of extracellular matrix (ECM) biochemical and biophysical properties to morphogenesis are poorly understood because of uncontrolled presentation of multiple adhesive ligands, limited control over mechanical properties, and lot-to-lot compositional variability in these natural ECMs. We engineered synthetic ECM-mimetic hydrogels with independent control over adhesive ligand density, mechanical properties, and proteolytic degradation to study the impact of ECM properties on epithelial morphogenesis. Normal cyst growth, polarization, and lumen formation were restricted to a narrow range of ECM elasticity, whereas abnormal morphogenesis was observed at lower and higher elastic moduli. Adhesive ligand density dramatically regulated apicobasal polarity and lumenogenesis independently of cell proliferation. Finally, a threshold level of ECM protease degradability was required for apicobasal polarity and lumen formation. This synthetic ECM technology provides new insights into how cells transduce ECM properties into complex morphogenetic behaviors.  相似文献   

6.
Seamless tubes form intracellularly without cell-cell or autocellular junctions. Such tubes have been described across phyla, but remain mysterious despite their simple architecture. In Drosophila, seamless tubes are found within tracheal terminal cells, which have dozens of branched protrusions extending hundreds of micrometres. We find that mutations in multiple components of the dynein motor complex block seamless tube growth, raising the possibility that the lumenal membrane forms through minus-end-directed transport of apical membrane components along microtubules. Growth of seamless tubes is polarized along the proximodistal axis by Rab35 and its apical membrane-localized GAP, Whacked. Strikingly, loss of whacked (or constitutive activation of Rab35) leads to tube overgrowth at terminal cell branch tips, whereas overexpression of Whacked (or dominant-negative Rab35) causes formation of ectopic tubes surrounding the terminal cell nucleus. Thus, vesicle trafficking has key roles in making and shaping seamless tubes.  相似文献   

7.
Numb is an endocytic adaptor protein that regulates internalization and post-endocytic trafficking of cell surface proteins. In polarized epithelial cells Numb is localized to the basolateral membrane, and recent work has implicated Numb in regulation of cell adhesion and migration, suggesting a role for Numb in epithelial–mesenchymal transition (EMT). We depleted MDCK cells of Numb and examined the effects downstream of EMT-promoting stimuli. While knockdown of Numb did not affect apicobasal polarity, we show that depletion of Numb destabilizes E-cadherin-based cell–cell adhesion and promotes loss of epithelial cell morphology. In addition, Numb knockdown in MDCK cells potentiates HGF-induced lamellipodia formation and cell dispersal. Examination of Rac1-GTP levels in Numb knockdown cells revealed hyperactivation of Rac1 following extracellular calcium depletion and HGF stimulation, which corresponds with enhanced loss of cell adhesions and lamellipodia formation. Furthermore, inhibition of Rac1 in Numb depleted cells stabilized cell–cell contacts following depletion of extracellular calcium. Together, these data indicate that Numb acts to suppress Rac1-GTP accumulation, and its loss leads to increased sensitivity toward extracellular signals that disrupt cell–cell adhesion to induce epithelial–mesenchymal transition (EMT) and cell dispersal.  相似文献   

8.
Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polarity. Here we describe a functional interaction of VE-cadherin with the cell polarity protein Pals1. Pals1 directly interacts with VE-cadherin through a membrane-proximal motif in the cytoplasmic domain of VE-cadherin. VE-cadherin clusters Pals1 at cell–cell junctions. Mutating the Pals1-binding motif in VE-cadherin abrogates the ability of VE-cadherin to regulate apicobasal polarity and vascular lumen formation. In a similar way, deletion of the Par3-binding motif at the C-terminus of VE-cadherin impairs apicobasal polarity and vascular lumen formation. Our findings indicate that the biological activity of VE-cadherin in regulating endothelial polarity and vascular lumen formation is mediated through its interaction with the two cell polarity proteins Pals1 and Par3.  相似文献   

9.
During early vertebrate development, epithelial cells establish and maintain apicobasal polarity, failure of which can cause developmental defects or cancer metastasis. This process has been mostly studied in simple epithelia that have only one layer of cells, but is poorly understood in stratified epithelia. In this paper we address the role of the polarity protein Partitioning defective-6 homolog beta (Par6b) in the developing stratified epidermis of Xenopus laevis. At the blastula stage, animal blastomeres divide perpendicularly to the apicobasal axis to generate partially polarized superficial cells and non-polarized deep cells. Both cell populations modify their apicobasal polarity during the gastrula stage, before differentiating into the superficial and deep layers of epidermis. Early differentiation of the epidermis is normal in Par6b-depleted embryos; however, epidermal cells dissociate and detach from embryos at the tailbud stage. Par6b-depleted epidermal cells exhibit a significant reduction in basolaterally localized E-cadherin. Examination of the apical marker Crumbs homolog 3 (Crb3) and the basolateral marker Lethal giant larvae 2 (Lgl2) after Par6b depletion reveals that Par6b cell-autonomously regulates the dynamics of apicobasal polarity in both superficial and deep epidermal layers. Par6b is required to maintain the “basolateral” state in both epidermal layers, which explains the reduction of basolateral adhesion complexes and epidermal cells shedding.  相似文献   

10.
 The special morphological features of freshwater planarians make them an attractive and informative model for studying the processes of regeneration and pattern formation. In this work, we investigate pattern formation and maturation of the planarian pharynx during regeneration in tail fragments. Using three monoclonal antibodies (TCAV-1, TF-26 and TMUS-13) specific for epithelial, secretory and muscle cells, respectively, we followed the sequence and timing of differentiation and maturation of these three cell types within the regenerating pharynx. Two of these monoclonal antibodies, TCAV-1 and TMUS-13, also labelled morphologically immature cells that appear to be committed to the differentiation pathway leading to their respective adult cell types. Our results show that the cells forming the new pharynx come from undifferentiated cells through proliferation and differentiation processes rather than from differentiated cells of the old stump. We describe three stages of pharynx regeneration according to the immunoreactivity shown: (1) no immunoreactivity, corresponding to the accumulation of undifferentiated cells that form the pharynx primordium; (2) immunoreactivity to TCAV-1 and TMUS-13, corresponding to the re-building of the pharynx; and (3) immunoreactivity to TF-26, corresponding to a fully mature and functional pharynx. The sequence of differentiation of these three cell types suggests that the pharynx grows by intercalation of new undifferentiated cells coming from the parenchyma between the older pharyngeal cells, in agreement with existing models of pharynx regeneration. Finally, our results suggest an intercalary model for pharynx epithelial cell renewal. Received: 30 September 1996 / Accepted: 6 December 1996  相似文献   

11.
During organogenesis of the C. elegans digestive system, epithelial cells within a cyst-like primordium develop diverse shapes through largely unknown mechanisms. We here analyze two adjacent, dorsal epithelial cells, called pm8 and vpi1, that remodel their shapes and apical junctions to become donut-shaped, or toroidal, single-cell tubes. pm8 and vpi1 delaminate from the dorsal cyst epithelium and migrate ventrally, across the midline of the cyst, on a transient tract of laminin. pm8 appears to encircle the midline by wrapping around finger-like projections from neighboring cells. Finally, pm8 and vpi1 self-fuse to become toroids by expressing AFF-1 and EFF-1, two fusogens that are each sufficient to promote crossfusion between other cell types. Notch signaling in pm8 induces AFF-1 expression, while simultaneously repressing EFF-1 expression; vpi1 expresses EFF-1 independent of Notch. Thus, the adjacent pm8 and vpi1 cells express different fusogens, allowing them to self-fuse into separate, single-cell tubes while avoiding crossfusion.  相似文献   

12.
Trichoblasts ofGibasis geniculata andTradescantia, fluminensis were observedin vivo under the polarizing microscope with the first-order red plate of a retardation of 530 mμ. It was revealed that the cell wall’s birefringence in plane view was negative with respect to the apicobasal axis of the cell in young cells before elongation, turning positive after elongation. Birefringence has never been observed when the cellular polarity was disturbed by colchicine. Therefore, it seems that the cellular polarity of root hair formation is controlled by anisotropic structures of the cell wall.  相似文献   

13.
The histological characteristics of the digestive tract and the ultrastructure of mucosal cells of the stomach and intestine of rice field eel, Monopterus albus, are described to provide a basis for future studies on its digestive physiology. The digestive tract of the rice field eel is a long and coiled tube composed of four layers: mucosa, lamina propria‐submucosa, muscularis and serosa. The pharynx and oesophagus mucosa is lined with a stratified epithelium. The stomach includes the cardiac and pyloric portions and the fundus. Many gastric pits are formed by invaginations of the mucosal layer and tubular gastric glands formed by the columnar cells in the fundus. The intestine is separated from the stomach by a loop valve and divided into a proximal portion and a distal portion. The proximal intestinal epithelium consists of columnar cells with microvilli towards the lumen and goblet cells. The enterocytes are joined at the apical surface by the junctional complex, including the evident desmosomas. Numerous lysosomes and some vesicles are evident in the upper cytoplasm of the cells, and a moderate amount of endoplasmic reticulum and lysosomes are scattered in the supranuclear cytoplasm. The epithelium becomes progressively thicker and the folds containing large numbers of goblet cells are fewer and shorter in the distal portion of the intestine. At the ultrastuctural level, the columnar cells of the tubular gastric glands have numerous clear vacuoles and channels. A moderate amount of pepsinogen granules are present in the stomach. The enterocytes of the intestinal mucosa display a moderate amount of endoplasmic reticulum and lysosomes, and long and regular microvilli.  相似文献   

14.
The structure and function of epithelial sheets generally depend on apicobasal polarization, which is achieved and maintained by linking asymmetrically distributed intercellular junctions to the cytoskeleton of individual cells. Recent studies in both Drosophila and vertebrate epithelia have yielded new insights into the conserved mechanisms by which apicobasal polarity is established and maintained during development. In mature polarized epithelia, apicobasal polarity is important for the establishment of adhesive junctions and the formation of a paracellular diffusion barrier that prevents the movement of solutes across the epithelium. Recent findings show that segregation of ligand and receptor with one on each side of this barrier can be a crucial regulator of cell-cell signaling events.  相似文献   

15.
We have determined the temporal and spatial relationship between cell polarization and alpha-actinin localization by analysing the redistribution of alpha-actinin and F-actin in spherical PMNs developing polarity and in polarized cells reversing polarity following localized stimulation with chemotactic peptide using micropipettes. Initially spherical PMNs develop a one-sided accumulation of alpha-actinin before lamellipodia enriched in alpha-actinin are formed. In polarized cells, alpha-actinin is concentrated at the leading front. When polarity is reversed, alpha-actinin redistribution to the uropod precedes reversal of morphological polarity and formation of new lamellipodia at the uropod. Later, lamellipodia enriched in F-actin and alpha-actinin develop at the former uropod to form a new front. The data document that redistribution of alpha-actinin is a very early event in the development of polarity, which precedes formation of lamellipodia.  相似文献   

16.
Intercellular tight junctions define epithelial apicobasal polarity and form a physical fence which protects underlying tissues from pathogen invasions. PALS1, a tight junction-associated protein, is a member of the CRUMBS3-PALS1-PATJ polarity complex, which is crucial for the establishment and maintenance of epithelial polarity in mammals. Here we report that the carboxy-terminal domain of the SARS-CoV E small envelope protein (E) binds to human PALS1. Using coimmunoprecipitation and pull-down assays, we show that E interacts with PALS1 in mammalian cells and further demonstrate that the last four carboxy-terminal amino acids of E form a novel PDZ-binding motif that binds to PALS1 PDZ domain. PALS1 redistributes to the ERGIC/Golgi region, where E accumulates, in SARS-CoV–infected Vero E6 cells. Ectopic expression of E in MDCKII epithelial cells significantly alters cyst morphogenesis and, furthermore, delays formation of tight junctions, affects polarity, and modifies the subcellular distribution of PALS1, in a PDZ-binding motif-dependent manner. We speculate that hijacking of PALS1 by SARS-CoV E plays a determinant role in the disruption of the lung epithelium in SARS patients.  相似文献   

17.
Modern crocodylians, including Alligator mississippiensis, have a greatly elaborated system of pneumatic sinuses invading the cranium. These sinuses invade nearly all the bones of the chondrocranium and several bony elements of the splanchnocranium, but patterns of postnatal paratympanic sinus development are poorly understood and documented. Much of crocodylomorph—indeed archosaurian—evolution is characterized by the evolution of various paratympanic air sinuses, the homologies of which are poorly understood due in large part to the fact that individual sinuses tend to become confluent in adults, obscuring underlying patterns. This study seeks to explore the ontogeny of these sinuses primarily to clarify the anatomical relations of the individual sinuses before they become confluent and thus to provide the foundation for later studies testing hypotheses of homology across extant and extinct Archosauria. Ontogeny was assessed using computed tomography in a sample of 13 specimens covering an almost 19-fold increase in head size. The paratympanic sinus system comprises two major inflations of evaginated pharyngeal epithelium: the pharyngotympanic sinus, which communicates with the pharynx via the lateral (true) Eustachian tubes and forms the cavum tympanicum proprium, and the median pharyngeal sinus, which communicates with the pharynx via the median pharyngeal tube. Each of these primary inflations gives rise to a number of secondary inflations that further invade the bones of the skull. The primary sinuses and secondary diverticula are well developed in perinatal individuals of Alligator, but during ontogeny the number and relative volumes of the secondary diverticula are reduced. In addition to describing the morphological ontogeny of this sinus system, we provide some preliminary exploratory analyses of sinus function and allometry, rejecting the hypothesis that changes in the volume of the paratympanic sinuses are simply an allometric function of braincase volume, but instead support the hypothesis that these changes may be a function of the acoustic properties of the middle ear.  相似文献   

18.
Oda-Ishii I  Ishii Y  Mikawa T 《PloS one》2010,5(10):e13689

Background

The notochord is a signaling center required for the patterning of the vertebrate embryic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood.

Methodology/Principal Findings

Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete.

Conclusions/Significance

Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.  相似文献   

19.
20.
Polarized differentiation of the intestinal epithelium has been previously shown to depend on an intact microtubular system that is essential for vectorial delivery of apical membrane proteins to the apical cell surfaces. Uniform alignment and polarization of microtubules have been suggested to provide the ultrastructural basis for vectorial transport between the Golgi apparatus and the apical cell surface. In the present study we applied the hook decoration technique to analyse the polarity of microtubules in the rat jejunal epithelium. By immunocytochemistry we studied the subcellular location of gamma-tubulin, an essential component of microtubule-organizing centers. Microtubules were found to be mainly aligned parallel to the apicobasal axis of the cells and to extend from the subterminal space underneath the apical terminal web down to the cellular basis. We found that 98% out of 1122 decorated microtubules displayed uniform apicobasal polarity with the growing ends (plus ends) pointing basally and the non-growing ends (minus ends) pointing towards the cellular apex. No differences were observed with respect to microtubular polarity between the apical, perinuclear and infranuclear cellular portions. Immunostaining specific for gamma-tubulin was restricted to the apical subterminal space underneath the rootlets of microvilli. These findings indicate that the apical subterminal space of enterocytes serves as the predominant if not exclusive microtubule-organizing compartment from which uniformly polarized microtubules grow out with their plus ends towards the cellular basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号