首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There were studied transitional processes accompanying the beginning of growth under glucose addition and stopping of growth under glucose exhaustion in pure and mixed aerobic cultures of Escherichia coli and Serratia marcescens. Continued record of Eh, pH, and CO2 showed that these processes sharply differ from each other in their character in pure and mixed cultures, it is particularly related to the changes of the redox potential. There is no characteristic change in the redox potential in pure culture of E. coli at growth termination in the case when S. marcescens cells are present in the culture.  相似文献   

2.
It was shown that changes in the redox potential can be due to the influence of compounds which alter the intracellular pH (acetate or propionate, protonophore carbonyl-cyanide-m-chlorophenyl hydrazone, permeate cation TPP+). A correlation was found between the redox potential changes and the number of SH-groups in the medium and on cell surface. It was shown also that the previously reported redox potential shifts during the transition of E. coli and B. subtilis cultures to the stationary phase under glucose or ammonium exhaustion are due to the increase in the number of SH-groups in the medium and on cell surface. A hypothesis is put forward, according to which the changes in intracellular pH play a trigger role, whereas those in the thiol: disulfide ratio inside and outside the cells are thought to amplify regulatory signals.  相似文献   

3.
We report here on the utility of on-line culture redox potential and dissolved oxygen measurements to identify metabolic changes in fermentation by Corynebacterium glutamicum under aerobic conditions. Metabolic changes were identified by observing discrepancies in the profile of culture redox potential and dissolved oxygen. On the basis of these measurements, we can identify the end of the lag phase, threonine exhaustion, and glucose exhaustion during fermentation.  相似文献   

4.
Two kinds of redox-potential changes were observed in batch cultures of E. coli, B. subtilis and B. megaterium with intensive aeration and pH maintenance at constant level: (i) a gradual decrease of the redox potential during continual bacterial growth as a result of interactions between platinum electrode and cell surface; (ii) the redox jumps in the generation of which the soluble redox substances take part under the conditions of different transitional processes (exhaustion of the sources of carbon, energy of nitrogen, metabolism switching from one source to another and so on). The redox monitoring may be useful for cultivation control in these situations.  相似文献   

5.
Oxidation/reduction potential (ORP, redox potential, or Eh) is one of the physicochemical parameters characterizing the state of microbial cultures. Changes in pH and concentration of the redoxactive gases (O2, H2, and H2S) in the cultivation medium are assumed to be the major factors of redox potential changes in the cultures of aerobic microorganisms. In the review, results of the studies of redox potential changes in various bacterial cultures under various stress conditions are summarized. The characteristic feature of these stress factors is the absence of direct correlation between the redox potential, on one hand, and partial oxygen pressure and pH, on the other. Extracellular low-molecular weight thiols (LWT) were demonstrated to be the major contributors to such changes in the redox potential. The possible role of the changes in LWT concentrations inside and outside the cells in the processes of signal transduction and redox regulation of cellular functions is discussed.  相似文献   

6.
7.
Oxidative redox titrations of the mitochondrial cytochromes were performed in near-anoxic RAW 264.7 cells by inhibiting complex I. Cytochrome oxidation changes were measured with multi-wavelength spectroscopy and the ambient redox potential was calculated from the oxidation state of endogenous cytochrome c. Two spectral components were separated in the α-band range of cytochrome oxidase and they were identified as the difference spectrum of heme a when it has a high (a(H)) or low (a(L)) midpoint potential (E(m)) by comparing their occupancy during redox titrations carried out when the membrane potential (ΔΨ) was dissipated with a protonophore to that predicted by the neoclassical model of redox cooperativity. The difference spectrum of a(L) has a maximum at 605nm whereas the spectrum of a(H) has a maximum at 602nm. The ΔΨ-dependent shift in the E(m) of a(H) was too great to be accounted for by electron transfer from cytochrome c to heme a against ΔΨ but was consistent with a model in which a(H) is formed after proton uptake against ΔΨ suggesting that the spectral changes are the result of protonation. A stochastic simulation was implemented to model oxidation states, proton uptake and E(m) changes during redox titrations. The redox anti-cooperativity between heme a and heme a(3), and proton binding, could be simulated with a model where the pump proton interacted with heme a and the substrate proton interacted with heme a(3) with anti-cooperativity between proton binding sites, but not with a single proton binding site coupled to both hemes.  相似文献   

8.
We investigated the relationship of dissolved oxygen and culture redox potential (CRP) on amino acid production. Corynebacterium glutamicum ATCC 14296 was used for all experiments. The fermentation can be divided into a growth phase and a production phase. Our results indicate that in order to get higher amino acid production, a lower oxygen supply during the exponential phase is favored. A higher oxygen supply rate appears to be necessary during the production phase. Culture redox potential (CRP) was used to monitor the fermentation. CRP readings were observed to drop to a characteristic minimum value as the metabolic state changed from a growth to production phase. This was evidenced by the commencement of amino acid production and a simultaneous uptake of lactate. Upon lactate exhaustion, the CRP increased abruptly. At the same time, maximal amino acid yields were observed. By the use of minimum CRP as an indication of metabolic phase changes, the agitation rate was changed to increase oxygen supply during the production phase. This significantly increased amino acid production. These results show that culture redox potential measurements can be used to monitor and optimize amino acid production by process manipulation.  相似文献   

9.
Culture redox potential (CRP) and oxygen uptake rate (OUR) were monitored on-line during glucose- and glutamine-limited batch cultures of a murine hybridoma cell line that secretes a neutralizing monoclonal antibody specific to toxin 2 of the scorpion Centruroides noxius Hoffmann. It was found that OUR and CRP can be used for assessing the viable cell concentration and growth phases of the culture. Before nutrient depletion, OUR increased exponentially with viable cell concentration, whereas CRP decreased monotonically until cell viability started to decrease. During the death phase, CRP gradually increased. A sudden decrease in OUR occurred upon glucose or glutamine depletion. CRP traced the dissolved oxygen profile during a control action or an operational eventuality, however, during nutrient depletion it did not follow the expected behavior of a system composed mainly by the O(2)/H(2)O redox couple. Such a behavior was not due to the accumulated lactate or ammonia, nor to possible intracellular redox potential changes caused by nutrient depletion, as inferred from respiration inhibition by rotenone or uncoupled respiration by 2,4-dinitrophenol. As shown in this study, operational eventualities can be erroneously interpreted as changes in OUR when using algorithms based solely on oxygen balances. However, simultaneous measurements of CRP and OUR may be used to discriminate real metabolic events from operational failures. The results presented here can be used in advanced real-time algorithms for controling glucose and glutamine at low concentrations, avoiding under- or over-feeding them in hybridoma cultures, and consequently reducing the accumulation of metabolic wastes and improving monoclonal antibody production. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 555-563, 1997.  相似文献   

10.
Acetivibrio celluloyticus converts cellulose directly to ethanol, acetate, H(2), and CO(2). The effects of various physical and chemical parameters, and their interdependence, including pH, temperature, redox, and ethanol toxicity on this fermentation, were studied. Controlling pH at 6.8 favored a predominance of ethanol over acetate. Supplementation of the medium with additional reductant, concomitant with a lower redox potential, incresed ethanol formation. Results from ethanol-challenged cultures indicated that cell lysis occurs with growing but not with nongrowing cells. A stable strain was adapted for growth in ethanol concentrations almost sevenfold greater than the parent organism.  相似文献   

11.
On-line NAD(P)H fluorescence and culture redox potential (CRP) measurements were utilized to investigate the role of Vitreoscilla hemoglobin (VHb) in perturbing oxygen metabolism of microaerobic Escherichia coli Batch cultures of a VHb-synthesizing E. coli strain and the iso-genic control under fully aerated conditions were subject to several high/low oxygen transitions, and the NAD(P)H fluorescence and CRP were monitored during these passages. The presence of VHb decreased the rate of net NAD(P)H generation by 2.4-fold under diminishing oxygen tension. In the absence of aeration, the strain producing VHb maintained a steady NAD(P)H level 1.8-fold less than that of the control, indicating that the presence of VHb keeps E. coli in a more oxidized state under oxygen-limited conditions. Estimated from CRP, the oxygen uptake rates near anoxia were 25% higher for cells with VHb than those without. These results suggest that VHb-expressing cells have a higher microaerobic electron transport chain turnover rate. To examine how NAD(P)H utilization of VHb-expressing cells responds to rapidly changing oxygen tension, which is common in large-scale fermentations, we pulsed air intermittently into a cell suspension and recorded the fluorescence response to the imposed dissolved oxygen (DO) fluctuation. Relative to the control, cells containing VHb had a sluggish fluorescence response to sudden changes of oxygen tension, suggesting that VHb buffers intracellular redox perturbations caused by extracellular DO fluctuations.(c) John Wiley & Sons, Inc.  相似文献   

12.
The tripeptide antioxidant γ-L-glutamyl-L-cysteinyl-glycine, or glutathione (GSH), serves a central role in ROS scavenging and oxidative signalling. Here, GSH, glutathione disulphide (GSSG), and other low-molecular-weight (LMW) thiols and their corresponding disulphides were studied in embryogenic suspension cultures of Dactylis glomerata L. subjected to moderate (0.085 M NaCl) or severe (0.17 M NaCl) salt stress. Total glutathione (GSH + GSSG) concentrations and redox state were associated with growth and development in control cultures and in moderately salt-stressed cultures and were affected by severe salt stress. The redox state of the cystine (CySS)/2 cysteine (Cys) redox couple was also affected by developmental stage and salt stress. The glutathione half-cell reduction potential (E(GSSG/2 GSH)) increased with the duration of culturing and peaked when somatic embryos were formed, as did the half-cell reduction potential of the CySS/2 Cys redox couple (E(CySS/2 Cys)). The most noticeable relationship between cellular redox state and developmental state was found when all LMW thiols and disulphides present were mathematically combined into a 'thiol-disulphide redox environment' (E(thiol-disulphide)), whereby reducing conditions accompanied proliferation, resulting in the formation of pro-embryogenic masses (PEMs), and oxidizing conditions accompanied differentiation, resulting in the formation of somatic embryos. The comparatively high contribution of E(CySS/2 Cys) to E(thiol-disulphide) in cultures exposed to severe salt stress suggests that Cys and CySS may be important intracellular redox regulators with a potential role in stress signalling.  相似文献   

13.
The cellular glutathione redox buffer is assumed to be part of signal transduction pathways transmitting environmental signals during biotic and abiotic stress, and thus is essential for regulation of metabolism and development. Ratiometric redox-sensitive GFP (roGFP) expressed in Arabidopsis thaliana reversibly responds to redox changes induced by incubation with H(2)O(2) or DTT. Kinetic analysis of these redox changes, combined with detailed characterization of roGFP2 in vitro, shows that roGFP2 expressed in the cytosol senses the redox potential of the cellular glutathione buffer via glutaredoxin (GRX) as a mediator of reversible electron flow between glutathione and roGFP2. The sensitivity of roGFP2 toward the glutathione redox potential was tested in vivo through manipulating the glutathione (GSH) content of wild-type plants, through expression of roGFP2 in the cytosol of low-GSH mutants and the endoplasmic reticulum (ER) of wild-type plants, as well as through wounding as an example for stress-induced redox changes. Provided the GSH concentration is known, roGFP2 facilitates the determination of the degree of oxidation of the GSH solution. Assuming sufficient glutathione reductase activity and non-limiting NADPH supply, the observed almost full reduction of roGFP2 in vivo suggests that a 2.5 mm cytosolic glutathione buffer would contain only 25 nm oxidized glutathione disulfide (GSSG). The high sensitivity of roGFP2 toward GSSG via GRX enables the use of roGFP2 for monitoring stress-induced redox changes in vivo in real time. The results with roGFP2 as an artificial GRX target further suggest that redox-triggered changes of biologic processes might be linked directly to the glutathione redox potential via GRX as the mediator.  相似文献   

14.
In an attempt to elucidate the determinants of redox potential and protein stability in cytochrome b5, three mutants at a highly conserved residue Val45, which is a member of heme hydrophobic pocket residues have been characterized. The V45Y mutant was designed to introduce a bulkier residue and a hydroxyl group to the heme pocket. The mutants V45H and V45E were constructed to test the effect of positive and negative charge on the stability and redox potential of proteins. The influence of these mutants on the protein stability towards thermal, urea, acid, ethanol and on the redox potential were studied. It is concluded that the decrease of hydrophobic free energy and the larger volume of the tyrosine make the phenylhydroxyl group of tyrosine still sitting inside the hydrophobic pocket, while the side chain of the mutant V45E and V45H shift away from the heme pocket. The redox potentials of mutants V45Y, V45H, V45E and wild-type of cytochrome b5 are -35 mV, 8 mV, -26 mV and -3 mV, respectively. The bigger change of the V45Y on redox potential is due to the close contact between the hydroxyl group and the heme, while the changes of the V45E and V45H result from the alteration of charge density and distribution around the heme. Different relative stability of these mutants towards heat have been observed with the order: WT > V45Y-V45H > V45E being both in the oxidized and reduced state. The relative stability induced by addition of urea decreases in the order: WT > V45Y > V45H > V45E. These results suggest that the difference in the hydrophobic free energy is a major factor contributing to the stability of the Val45 mutants. Also the loose of the helix III in the mutant V45E makes it more unstable. These results indicate that residue Val45 plays an important role in the stability and redox potential of the protein.  相似文献   

15.
AIMS: To identify the role of oxidation-reduction (redox) potential in the premature growth inhibition and RpoS induction in Salmonella serotype Typhimurium in competitive growth experiments. METHODS AND RESULTS: Oxidation-reduction potential was measured throughout the growth of a minority population of Salm. Typhimurium in mixed cultures with other Gram-negative and Gram-positive organisms. A lux-based reporter was also used to evaluate RpoS activity in Salm. Typhimurium in competitor studies. In a mixed culture, the multiplication of a minority population of Salm. Typhimurium was inhibited when competing Gram-negative organisms entered the stationary phase. This was not seen when the competing flora was Gram-positive. The change in redox potential during growth in mixed cultures was closely linked to the inhibition of Salm. Typhimurium growth by Gram-negative competitors. An artificially induced drop in redox potential earlier during growth in mixed cultures with Gram-negative organisms reduced the time to RpoS induction in Salm. Typhimurium and thus inhibited its multiplication prematurely. In contrast, RpoS induction and growth inhibition were prevented under high redox potential conditions. CONCLUSIONS: This work shows that the inhibitory activity of competitive organisms can be mediated through their effect on redox potential-regulated RpoS induction. SIGNIFICANCE AND IMPACT OF THE STUDY: Redox potential is shown to be an important determinant of Salm. Typhimurium growth, an observation with practical implications both for its control and detection.  相似文献   

16.
By mutating the target residue of covalent flavinylation in vanillyl-alcohol oxidase, the functional role of the histidyl-FAD bond was studied. Three His(422) mutants (H422A, H422T, and H422C) were purified, which all contained tightly but noncovalently bound FAD. Steady state kinetics revealed that the mutants have retained enzyme activity, although the turnover rates have decreased by 1 order of magnitude. Stopped-flow analysis showed that the H422A mutant is still able to form a stable binary complex of reduced enzyme and a quinone methide product intermediate, a crucial step during vanillyl-alcohol oxidase-mediated catalysis. The only significant change in the catalytic cycle of the H422A mutant is a marked decrease in reduction rate. Redox potentials of both wild type and H422A vanillyl-alcohol oxidase have been determined. During reduction of H422A, a large portion of the neutral flavin semiquinone is observed. Using suitable reference dyes, the redox potentials for the two one-electron couples have been determined: -17 and -113 mV. Reduction of wild type enzyme did not result in any formation of flavin semiquinone and revealed a remarkably high redox potential of +55 mV. The marked decrease in redox potential caused by the missing covalent histidyl-FAD bond is reflected in the reduced rate of substrate-mediated flavin reduction limiting the turnover rate. Elucidation of the crystal structure of the H422A mutant established that deletion of the histidyl-FAD bond did not result in any significant structural changes. These results clearly indicate that covalent interaction of the isoalloxazine ring with the protein moiety can markedly increase the redox potential of the flavin cofactor, thereby facilitating redox catalysis. Thus, formation of a histidyl-FAD bond in specific flavoenzymes might have evolved as a way to contribute to the enhancement of their oxidative power.  相似文献   

17.
Pyridine nucleotide transhydrogenase is a metabolic enzyme transferring the reducing equivalent between two nucleotide acceptors such as NAD+ and NADP+ for balancing the intracellular redox potential. Soluble transhydrogenase (STH) of Azotobacter vinelandii was expressed in a recombinant Saccharomyces cerevisiae strain harboring the Pichia stipitis xylose reductase (XR) gene to study effects of redox potential change on cell growth and sugar metabolism including xylitol and ethanol formation. Remarkable changes were not observed by expression of the STH gene in batch cultures. However, expression of STH accelerated the formation of ethanol in glucose-limited fed-batch cultures, but reduced xylitol productivity to 71% compared with its counterpart strain expressing xylose reductase gene alone. The experimental results suggested that A. vinelandii STH directed the reaction toward the formation of NADH and NADP+ from NAD+ and NADPH, which concomitantly reduced the availability of NADPH for xylose conversion to xylitol catalyzed by NADPH-preferable xylose reductase in the recombinant S. cerevisiae.  相似文献   

18.
The maximum redox potential difference between the NAD+/NADH couple and the succinate/fumarate couple generated during ATP-energized reduction of NAD+ by succinate in submitochondrial particles was measured, together with the electrochemical potential difference for protons (delta mu approximately H+). The presence of cyanide, the time-independence of the redox potential difference and the irrelevance of the initial redox state of the NAD+/NADH couple ensured that the experimental situation corresponded to a 'static-head condition' with delta mu approximately H+ as the input force and the redox potential difference as the output force, the flow of electrons having reached dynamic equilibrium. Consequently, the observed value of 1.6 for the ratio delta Ge/delta mu approximately H+ is interpreted as indicating that the leads to H+/e- stoicheiometry at 'site 1' is 1.5 and that therefore the mechanism of the proton pump at 'site 1' is not of the group-translocation type (no direct leads to e - leads to H+ coupling).  相似文献   

19.
Vasko MR  Guo C  Kelley MR 《DNA Repair》2005,4(3):367-379
Although correlative studies demonstrate a reduction in the expression of apurinic/apyrimidinic endonuclease/redox effector factor (Ape1/Ref-1 or Ape1) in neural tissues after neuronal insult, the role of Ape1 in regulating neurotoxicity remains to be elucidated. To address this issue, we examined the effects of reducing Ape1 expression in primary cultures of hippocampal and sensory neurons on several endpoints of neurotoxicity induced by H2O2. Ape1 is highly expressed in hippocampal and sensory neurons grown in culture as indicated by immunohistochemistry, immunoblotting and activity. Exposing hippocampal or sensory neuronal cultures to 25 or 50 nM small interfering RNA to Ape1 (Ape1siRNA), respectively, for 48 h, causes a reduction in immunoreactive Ape1 by approximately 65 and 54%, and an equivalent loss in endonuclease activity. The reduced expression of Ape1 is maintained for up to 5 days after the siRNA in the medium is removed, whereas exposing cultures to scrambled sequence siRNA (SCsiRNA) has no effect of Ape1 protein levels. The reduction in Ape1 significantly reduces cell viability in cultures 24 h after a 1-h exposure to 25-300 microM H2O2, compared to SCsiRNA treated controls. In cells treated with SCsiRNA, exposure to 300 microM H2O2 reduced cell viability by 40 and 30% in hippocampal and sensory neuronal cultures, respectively, whereas cultures treated with Ape1siRNA lost 93 and 80% of cells after the peroxide. Reduced Ape1 levels also increase caspase-3 activity in the cells, 2-3-fold, 60min after a 1-h exposure to 100 microM H2O2 in the cultures. Exposing neuronal cultures with reduced expression of Ape1 to 65 microM H2O2 (hippocampal) or 300 microM H2O2 (sensory) for 1h results in a 3-fold and 1.5-fold increase in the phosphorylation of histone H2A.X compared to cells exposed to SCsiRNA. Overexpressing wild-type Ape1 in hippocampal and sensory cells using adenoviral expression constructs results in significant increase in cell viability after exposure to various concentrations of H2O2. The C65A repair competent/redox incompetent Ape1 when expressed in the hippocampal and sensory cells conferred only partial protection on the cells. These data support the notion that both of functions of Ape1, redox and repair are necessary for optimal levels of neuronal cell survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号