首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of oxidation of benzo(a)pyrene (BP) and its analog to be oxidized by peroxidases in several tissues has been studied. The kinetics of the horseradish peroxidase (HRP) oxidation of BP and 7,8-dihydro-7,8-dihydroxy benzo(a)pyrene (BP-7,8-diol) were examined. Effective ratios of H2O2 and HRP for catalytic oxidation were 13.74 for BP and 4.58 for BP-7,8-diol. The maximum ratio was approximately 90 for both hydrogen donors (BP and BP-7,8-diol) to the ES complex. The maximum ratio of oxidized BP and BP-7,8-diol to HRP was 5.7. Ks values for H2O2 were 1.68 and 6.35 microM for BP and BP-7,8-diol, respectively. The mean values of the rate constants, k5, for the oxidation of BP and BP-7,8-diol were 0.56 X 10(5) M-1 sec-1 and 4.1 X 10(5) M-1 sec-1, respectively, at low concentrations. At low concentrations a Hill plot of the oxidation of BP showed a negative value (nH = 0.5) and at high concentrations nH = 1.0. On the other hand, that of BP-7,8-diol showed positive cooperativeness (nH = 1.8). These oxidation reactions caused substrate (donor) inhibition at high concentrations. The inhibition constants, KA', were 9.8 and 5.65 microM for BP and BP-7,8-diol, respectively. The reactivity of the oxidation of BP-7,8-diol was five to six times larger than that of BP.  相似文献   

2.
Analysis of repetitive scan difference spectra of incubation mixtures containing rat liver microsomes, 3- or 9-hydroxybenzo(a)pyrene, oxygen, and NADPH shows the formation of products with absorbance in the 400–450 nm region. Based on the chromatographic retention time, absorbance, and fluorescence spectra, the two major products of 9-hydroxybenzo(a)pyrene metabolism may be diphenols. The existence of spectral intermediates which resemble phenols rather than quinones during the steady-state metabolism of 3-hydroxybenzo(a)pyrene strongly indicates that either the major product is a diphenol which slowly oxidizes to yield 3,6-quinone and/or that an active quinone reductase exists in liver microsomes.  相似文献   

3.
4.
5.
7-Hydroxyphenoxazin-3-one, commonly known as resorufin, strongly inhibits benzo(a)pyrene-induced mutation in the Ames bacterial reversion assay. The antimutagenic mechanism is due in part to redox cycling of resorufin with the concommitant transfer of reducing equivalents from NADPH to molecular oxygen. The diversion of electrons from cytochrome P-450 enzymes results in a large decrease in the percent of benzo(a)pyrene metabolized by rat liver microsomes as measured by HPLC. Resorufin stimulated a non-stoichiometric consumption of NADPH and was reduced in S-9 or microsomal solutions. These processes were sensitive to dicumarol and NADP inhibition to different degrees in each liver fraction. This suggests two pathways are involved in resorufin redox cycling, one involving DT-diaphorase and the other with NADPH cytochrome P-450 reductase. Oxygen was shown to be an electron acceptor for S-9 mediated resorufin redox cycling, but was not consumed by a microsomal solution in the presence of resorufin and NADPH.  相似文献   

6.
We have examined the metabolites produced by in vitro incubation of benzo(a)pyrene with 3-methylcholanthrene-induced mice liver microsomes. Our objective was to observe directly a possible difference in microsomal enzyme systems of animal models having different susceptibility to chemical carcinogens. The metabolites produced by the two animal models,C57BL6J and DBA2 mice, were analyzed by a highly sensitive, “three-dimensional” fluorescence plotting technique. The fluorescence spectra of the total ethyl acetate-soluble metabolites clearly indicate that the metabolites produced by DBA2 enzymes were predominantly monohydroxylated benzo(a)pyrene while those produced by the liver microsomes of C57BL6J were highly enriched with the 7,8-dihydrodihydroxybenzo(a)pyrene type.  相似文献   

7.
A technique to measure the activity of pyruvate carboxylase spectrophotometrically in crude liver homogenates is described. The assay is based on the transformation of oxaloacetate, which is formed during the carboxylation reaction, into citrate in the presence of excess acetyl CoA and citrate synthase. After removal of pyruvate with KBH4 and of protein with HClO4, citrate is cleaved with citrate lyase into oxaloacetate and acetate, and oxaloacetate then is measured spectrophotometrically. Optimal concentrations of pyruvate, Mg2+, ATP, and KHCO3 for the carboxylation reaction and the Vmax were in good correlation with the data found by others using [14C]pyruvate.  相似文献   

8.
9.
Evaluating in vivo photochemical genotoxicity (photogenotoxicity) or photochemical carcinogenicity (photocarcinogenicity) in the skin that is actually exposed to light is important for estimating the risk of human exposure to chemicals under sunlight. With regard to the skin micronucleus test, Nishikawa et al. developed a reliable technique that is simple and in which the negative control has a stable background. In the present study, we applied 8-methoxypsoralen (8-MOP) and benzo[a]pyrene (B[a]P) to the backs of hairless mice and subjected the mice to irradiation by a sunlight simulator in order to investigate whether this test can detect photogenotoxicity of these chemicals. In the treatment with 8-MOP [0.00075% and 0.0015% (w/v)], a significant increase was observed in the frequency of micronucleated cells only under light irradiation using the sunlight simulator. At a high chemical dose, the frequency of micronucleated cells increased from 48h after the treatment, peaked at 96h, and then decreased at 168h. Furthermore, at 96h with the high dose under light irradiation, we frequently observed cells with nuclear buds. In the treatment with B[a]P [first experiment: 0.025% and 0.05% (w/v); second experiment: 0.005%, 0.01%, and 0.02% (w/v)], a significant increase was observed in the frequency of micronucleated cells at skin-irritating doses [0.01%, 0.02%, 0.025%, and 0.05% (w/v)] at 72 or 96h after the treatment only under light irradiation using the sunlight simulator. In conclusion, photogenotoxicity of 8-MOP and B[a]P was detected in the in vivo photochemical skin micronucleus study.  相似文献   

10.
r-7,c-10,t-8,t-9-Tetrahydroxybenzo(a)pyrene (7,10/8,9-tetrol), which is the principal hydrolysis product of r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene (anti-diol-epoxide), was resolved and measured by HPLC in organic extracts of incubations which contained induced rat liver microsomes and BP. Kinetic analyses showed that: (a) following a 5- to 7-min lag period, anti-diol-epoxide formation was linear, and (b) levels of anti-diol-epoxide formed were highly dependent upon the starting BP concentration. anti-Diol-epoxide production increased at starting BP concentrations of 0–12 μm and decreased in incubations containing 12–25 μm BP. However, between 25 and 100 μm BP, anti-diol-epoxide formation was stable at a level representing 65% of the peak production which occurred at a starting BP concentration of 12 μm. BP oxidation was competitively inhibited by (?)-trans-BP-7,8-dihydrodiol and about five times less effectively by the (+)-trans-BP-7,8-dihydrodiol. The inability of a severalfold excess of BP (25–100 μm) to totally inhibit BP-7,8-dihydrodiol oxidation was explained by the presence of a microsomal substrate compartment which was saturated at only 6–8 μm BP, the remaining BP present as aggregates in the aqueous compartment. Purification of microsomes by Sepharose 2B gel filtration after reaction with [3H]BP also indicated that BP-7,8-dihydrodiol was preferentially concentrated in the microsome compartment leading to a net increase in the ratio of BP-7,8-dihydrodiol to BP in the microsomal compartment, which favored BP-7,8-dihydrodiol oxidation to yield the biologically active anti-diol-epoxide.  相似文献   

11.
12.
13.
14.
Cytochromes P450 (CYPs) are important enzymes involved in the regulation of hormone synthesis and in the detoxification and/or activation of xenobiotics. CYPs are found in virtually all organisms, from archae, and eubacteria to eukaryota. A number of endocrine disruptors are suspected of exerting their effects through disruption of normal CYP function. Consequently, alterations in steroid hormone metabolism through changes in CYP could provide an important tool to evaluate potential effects of endocrine disruptors. The aim of this study was to investigate the potential effects of the known CYP modulator, benzo(a)pyrene (B(a)P), on the testosterone metabolism in the invertebrate Neomysis integer (Crustacea; Mysidacea). N. integer were exposed for 96 h to 0.43, 2.39, 28.83, 339.00 and 1682.86 μg B(a)P L− 1 and a solvent control, and subsequently their ability to metabolize testosterone was assessed. Identification and quantification of the produced phase I and phase II testosterone metabolites was performed using liquid chromatography coupled with multiple mass spectrometry (LC–MS2). Significant changes were observed in the overall ability of N. integer to metabolize testosterone when exposed to 2.39, 28.83, 339.00 and 1682.86 μg B(a)P L− 1 as compared to the control animals.  相似文献   

15.
The effect of asbestos on benzo(a)pyrene uptake by microsomal membranes and lipid micelles has been investigated. Asbestos mediates a rapid transport of the carcinogen into the membrane and also impairs benzo(a)pyrene metabolism in rabbit and rat liver microsomes by markedly inhibiting aryl hydrocarbon hydroxylase.  相似文献   

16.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-1) and (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-2) are highly mutagenic diol epoxide diastereomers that are formed during metabolism of the carcinogen (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Remarkable stereoselectivity has been observed on metabolism of the optically pure (+)- and (?)-enantiomers of the dihydrodiol which are obtained by separation of the diastereomeric diesters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. The high stereoselectivity in the formation of diol epoxide-1 relative to diol epoxide-2 was observed with liver microsomes from 3-methylcholanthrene-treated rats and with a purified cytochrome P-448-containing monoxygenase system where the (?)-enantiomer produced a diol epoxide-2 to diol epoxide-1 ratio of 6 : 1 and the (+)-enantiomer produced a ratio of 1 : 22. Microsomes from control and phenobarbital-treated rats were less stereospecific in the metabolism of enantiomers of BP 7,8-dihydrodiol. The ratio of diol epoxide-2 to diol epoxide-1 formed from the (?)- and (+)-enantiomers with microsomes from control rats was 2 : 1 and 1 : 6, respectively. Both enantiomers of BP 7,8-dihydrodiol were also metabolized to a phenolic derivative, tentatively identified as 6,7,8-trihydroxy-7,8-dihydrobenzo[a]pyrene, which accounted for ~30% of the total metabolites formed by microsomes from control and phenobarbital-pretreated rats whereas this metabolite represents ~5% of the total metabolites with microsomes from 3-methylcholanthrene-treated rats. With benzo[a]pyrene as substrate, liver microsomes produced the 4,5-, 7,8- and 9,10-dihydrodiol with high optical purity (>85%), and diol epoxides were also formed. Most of the optical activity in the BP 7,8-dihydrodiol was due to metabolism by the monoxygenase system rather than by epoxide hydrase, since hydration of (±)-benzo[a]pyrene 7,8-oxide by liver microsomes produced dihydrodiol which was only 8% optically pure. Thus, the stereospecificity of both the monoxygenase system and, to a lesser extent, epoxide hydrase plays important roles in the metabolic activation of benzo[a]pyrene to carcinogens and mutagens.  相似文献   

17.
Seventeen-day-old chick embryos were used as a test system to assess the effect of vitamin K1(K1) on benzo(a)pyrene (BP) metabolism as measured by the induction of arylhydrocarbon hydroxylase (AHH) and cytochrome P-450 and the levels of glutathione (GSH) and glutathione S-transferase (GST) in liver. Twenty-four hours after injection of BP into the air sac there was a sharp rise in AHH and P-450 and a drop in GSH. When K1 was injected 24 hr prior to BP there was a decrease in GST activity as compared with the control plus an augmented increase in AHH induction. This augmentation in BP metabolism (Phase I) together with a concomitant decrease in at least one mechanism of Phase II conjugation is in keeping with other evidence that K1 can play an adjuvant role in BP induced mutagenicity and carcinogenicity. Ubiquinone has a much lesser effect on BP metabolism than does K1 in equimolar concentration.  相似文献   

18.
Naphthalene or benzo(a)pyrene (100 nmol) was instilled into the closed rat intestinal loop in situ and the appearance of the free compound and its metabolites was determined in portal blood. Naphthalene appeared mostly unchanged in blood whereas benzo(a)pyrene was extensively metabolized by mucosal cells. The results suggest that absorption and metabolism are competing processes in the gut.  相似文献   

19.
20.
Three pyrenofurans, the pyreno[1,2-b]furan (FP1), the pyreno[2,1-b] furan (FP2) and the pyreno[4,5-b]furan (FP3) have been synthesized as analogues of the mutagenic and carcinogenic benzo(a)pyrene (FP1 and FP2) and of its non-carcinogenic isomer benzo(e)pyrene (FP3). For each of the pyrenofurans, the reactivity with DNA has been tested in presence of liver microsomes of rats induced with 3-methylcholanthrene. Fluorescence spectroscopy showed that only FP2 and FP3 which possess a "bay region" react with DNA. In both cases, metabolites bound to DNA have a fluorescence emission comparable to that of the "bay region" dihydrodiols obtained after the "in vitro" metabolism of initial molecules. FP2 is shown to react similarly to benzo(a)pyrene whereas the reactivity of FP3 is different from that of benzo(e)pyrene, in spite of their structural similarities. This is probably due to reasons of three-dimensional space configuration. The peculiar reactivity of FP3 is predicted by calculations of the bond order values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号