首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to further elucidate the radioprotective role of granulocyte colony-stimulating factor (G-CSF) induced in response to irradiation. The induction of G-CSF and interleukin-6 (IL-6) in response to radiation exposure was evaluated in mice. The level of cytokine in serum was determined by multiplex Luminex. The role of G-CSF on survival and tissue injury after total body gamma-irradiation was evaluated by administration of neutralizing antibody to G-CSF before radiation exposure. An isotype control was used for comparison and survival was monitored for 30 d after irradiation. Jejunum samples were used for immunohistochemistry. Ionizing radiation exposure induced significant levels of the hematopoietic cytokines G-CSF and IL-6, in mice receiving 9.2 Gy radiation. Maximal levels of G-CSF were observed in peripheral blood of mice 8h after irradiation. IL-6 levels were maximum at 12h after irradiation. Administration of G-CSF antibody significantly enhanced mortality in irradiated mice. G-CSF antibody-treated mice had higher numbers of CD68(+) cells and apoptotic cells in intestinal villi. Our results confirm that radiation exposure induces elevations of circulating G-CSF and IL-6. Neutralizing antibody to G-CSF exacerbates the deleterious effects of radiation, indicating that G-CSF induced in response to irradiation plays an important role in recovery.  相似文献   

2.
The radioadaptive survival response induced by a conditioning exposure to 0.45 Gy and measured as an increase in 30-day survival after mid-lethal X irradiation was studied in C57BL/6N mice. The acquired radioresistance appeared on day 9 after the conditioning exposure, reached a maximum on days 12-14, and disappeared on day 21. The conditioning exposure 14 days prior to the challenge exposure increased the number of endogenous spleen colonies (CFU-S) on days 12-13 after the exposure to 5 Gy. On day 12 after irradiation, the conditioning exposure also increased the number of endogenous CFU-S to about five times that seen in animals exposed to 4.25-6.75 Gy without preirradiation. The effect of the interval between the preirradiation and the challenge irradiation on the increase in endogenous CFU-S was also examined. A significant increase in endogenous CFU-S was observed when the interval was 14 days, but not 9 days. This result corresponded to the increase in survival observed on day 14 after the challenge irradiation. Radiation-inducted resistance to radiation-induced lethality in mice appears to be closely related to the marked recovery of endogenous CFU-S in the surviving hematopoietic stem cells that acquired radioresistance by preirradiation. Preirradiation enhanced the recovery of the numbers of erythrocytes, leukocytes and thrombocytes very slightly in mice exposed to a sublethal dose of 5 Gy, a dose that does not cause bone marrow death. There appears to be no correlation between the marked increase in endogenous CFU-S and the slight increase or no increase in peripheral blood cells induced by the radioadaptive response. The possible contribution by some factor, such as Il4 or Il11, that has been reported to protect irradiated animals without stimulating hematopoiesis is discussed.  相似文献   

3.
In experiments on mice F1(CBA x C57BL/6) the dependence of 30th days survival on the time of betaleukin (medicine form of interleukin-1 beta) administering after exposure to 7.5 Gy whole body gamma-irradiation from 137Cs (approximately DL80/30) was studied. Betaleukin was injected subcutaneously in dose 25 mcg/kg 0.2, 1, 3, 6 and 24 h after the exposure. The highest therapeutic effect took place in case of 0.2 h interval, then it dropped but was slightly expressed at 1 h. The hemopoiesis condition was studied in 7 or 9 days after the mice exposure to 6 Gy and betaleukin administering 1 h later in dose 25 or 50 mcg/kg. The positive effect on granulopoiesis beginning from the level of CFU-GM was observed. There were analyzed the reasons of weaker betaleukin effect and shorter period of its effectiveness after exposure in comparison with literature data regarding IL-1.  相似文献   

4.
IL-17A is a T cell-derived proinflammatory cytokine required for microbial host defense. In vivo expression profoundly stimulates granulopoiesis. At baseline, the hemopoietic system of IL-17R knockout mice (IL-17Ra(-/-)) is, with the exception of increased splenic progenitor numbers, indistinguishable from normal control mice. However, when challenged with gamma irradiation, hemopoietic toxicity is significantly more pronounced in IL-17Ra(-/-) animals, with the gamma irradiation-associated LD(50) being reduced by 150 rad. In spleen-derived T cells, gamma irradiation induces significant murine IL-17A expression in vivo but not in vitro. After sublethal radiation injury (500 rad), the infusion of purified CD4(+) T cells enhances hemopoietic recovery. This recovery is significantly impaired in IL-17Ra(-/-) animals or after in vivo blockade of IL-17Ra in normal mice, resulting in a reduction of hemopoietic precursors by 50% and of neutrophils by 43%. Following sublethal radiation-induced myelosuppression, in vivo overexpression of murine IL-17A in normal mice substantially enhanced granulopoietic restoration in mice with a 4-fold increase in neutrophils and splenic precursors on day 8 (CFU-granulocyte-macrophage/granulocyte-erythrocyte-megakaryocyte-monocyte, CFU-high proliferative potential), as well as 2- and 3-fold increases of bone marrow precursors, respectively. This establishes IL-17A as a hemopoietic response cytokine to radiation injury in mice and an inducible mechanism that is required for recovery of granulopoiesis after radiation injury.  相似文献   

5.
Conditioned medium from the human tumor cell line HBT 5637 possesses a unique hematopoietic activity, originally termed hemopoietin-1. Hemopoietin-1 alone does not stimulate bone marrow colony formation or proliferative responsesin vitro, but rather potentiates responses to other hematopoietic growth factors, such as CSF-1 and GM-CSF. In studies designed to characterize the molecular nature of this factor, it was found by molecular, biochemical biological and serological criteria that all the hemopoietin-1 like activity could be attributed to IL-1. The therapeutic potential of IL-1 was then tested in a system where myelopoiesis is depressed by whole body irradiation. After 750 R irradiation, mice were administered IL-1 twice daily for the duration of the experiment. Mice which received IL-1 treatment had an accelerated recovery of marrow colony forming capacity which was also reflected by significantly higher blood neutrophil levels as compared to control irradiated mice. IL-1 treated irradiated mice also had a significant increase in resistance to bacterial challenge 14 days post irradiation. Thus, IL-1 treatment was effective in augmenting myelopoiesis following sublethal whole body irradiation. The effects of the IL-1 treatment on the recovery of lymphocyte numbers was also assessed. Here the IL-1 treated irradiated mice had fewer lymphocytes and depressed mitogen responses by spleen cells. Indeed the thymus of the IL-1 treated irradiated mice remained chronically hypoplastic for the duration of the experiment. Although IL-1 treatment increased myeloid progenitors in the bone marrow, it caused a decrease in the frequency of pre-B cells. Thus, IL-1 administration is an effective treatment for accelerating myeloid recovery following the cytore ductive effects of irradiation, but the myelopoietic augmentation may be at the expense of lymphoid recovery.  相似文献   

6.
The goal of this study was to elucidate the action of the CD28 mimetic peptide p2TA (AB103) that attenuates an excessive inflammatory response in mitigating radiation-induced inflammatory injuries. BALB/c and A/J mice were divided into four groups: Control (C), Peptide (P; 5 mg/kg of p2TA peptide), Radiation (R; total body irradiation with 8 Gy γ-rays), and Radiation + Peptide (RP; irradiation followed by p2TA peptide 24 h later). Gastrointestinal tissue damage was evaluated by analysis of jejunum histopathology and immunohistochemistry for cell proliferation (Cyclin D1) and inflammation (COX-2) markers, as well as the presence of macrophages (F4/80). Pro-inflammatory cytokines IL-6 and KC as well as fibrinogen were quantified in plasma samples obtained from the same mice. Our results demonstrated that administration of p2TA peptide significantly reduced the irradiation-induced increase of IL-6 and fibrinogen in plasma 7 days after exposure. Seven days after total body irradiation with 8 Gy of gamma rays numbers of intestinal crypt cells were reduced and villi were shorter in irradiated animals compared to the controls. The p2TA peptide delivery 24 h after irradiation led to improved morphology of villi and crypts, increased Cyclin D1 expression, decreased COX-2 staining and decreased numbers of macrophages in small intestine of irradiated mice. Our study suggests that attenuation of CD28 signaling is a promising therapeutic approach for mitigation of radiation-induced tissue injury.  相似文献   

7.
Protection against whole body gamma-irradiation (WBI) of Swiss mice orally fed with Triphala (TPL), an Ayurvedic formulation, in terms of mortality of irradiated animals as well as DNA damage at cellular level has been investigated. It was found that radiation induced mortality was reduced by 60% in mice fed with TPL (1g/kg body weight/day) orally for 7 days prior to WBI at 7.5 Gy followed by post-irradiation feeding for 7 days. An increase in xanthine oxidoreductase activity and decrease in superoxide dismutase activity was observed in the intestine of mice exposed to WBI, which, however, reverted back to those levels of sham-irradiated controls, when animals were fed with TPL for 7 days prior to irradiation. These data have suggested the prevention of oxidative damage caused by whole body radiation exposure after feeding of animals with TPL. To further understand the mechanisms involved, the magnitude of DNA damage was studied by single cell gel electrophoresis (SCGE) in blood leukocytes and splenocytes obtained from either control animals or those fed with TPL for 7 days followed by irradiation. Compared to irradiated animals without administering TPL, the mean tail length was reduced about three-fold in blood leukocytes of animals fed with TPL prior to irradiation. Although, similar protection was observed in splenocytes of TPL fed animals, the magnitude of prevention of DNA damage was significantly higher than that observed in leukocytes. It has been concluded that TPL protected whole body irradiated mice and TPL induced protection was mediated through inhibition of oxidative damage in cells and organs. TPL seems to have potential to develop into a novel herbal radio-protector for practical applications.  相似文献   

8.
目的:观察减毒沙门氏菌携带的血小板第四因子活性片段PF417 70 的放射保护作用。方法:通过口服途经喂饲小鼠携带PF4活性片段的减毒沙门氏菌,在第 2次喂饲后小鼠接受 70 0cGy全身照射,然后观察PIRES2 EGFP PF417 70 在小鼠体内的表达,并观察小鼠的造血恢复情况。结果:在小鼠的肝脏、脾脏、肾脏、小肠、外周血及骨髓均能检测到GFP的表达和转基因的整合。与对照组比较,实验组小鼠的生存期明显延长,照射后第 7d和 1 4d骨髓有核细胞数、骨髓培养的CFU GM和HPP CFC数量明显增加 (P <0 0 5 )。结论:首次应用减毒沙门氏菌SL32 61为载体来介导PF4活性片段的生物学作用,并证实通过口服途径可以保护小鼠免受放射损伤,并促进放射损伤后小鼠的造血恢复。  相似文献   

9.
Medications that can mitigate against radiation injury are limited. In this study, we investigated the ability of recombinant human growth hormone (rhGH) to mitigate against radiation injury in mice and nonhuman primates. BALB/c mice were irradiated with 7.5 Gy and treated post-irradiation with rhGH intravenously at a once daily dose of 20 µg/dose for 35 days. rhGH protected 17 out of 28 mice (60.7%) from lethal irradiation while only 3 out of 28 mice (10.7%) survived in the saline control group. A shorter course of 5 days of rhGH post-irradiation produced similar results. Compared with the saline control group, treatment with rhGH on irradiated BALB/c mice significantly accelerated overall hematopoietic recovery. Specifically, the recovery of total white cells, CD4 and CD8 T cell subsets, B cells, NK cells and especially platelets post radiation exposure were significantly accelerated in the rhGH-treated mice. Moreover, treatment with rhGH increased the frequency of hematopoietic stem/progenitor cells as measured by flow cytometry and colony forming unit assays in bone marrow harvested at day 14 after irradiation, suggesting the effects of rhGH are at the hematopoietic stem/progenitor level. rhGH mediated the hematopoietic effects primarily through their niches. Similar data with rhGH were also observed following 2 Gy sublethal irradiation of nonhuman primates. Our data demonstrate that rhGH promotes hematopoietic engraftment and immune recovery post the exposure of ionizing radiation and mitigates against the mortality from lethal irradiation even when administered after exposure.  相似文献   

10.
Interferon-γ-inducing factor/interleukin-18 is a novel cytokine that reportedly augments natural killer (NK) activity in human and mouse peripheral blood mononuclear cell cultures in vitro and has recently been designated IL-18. In this study, IL-18 exhibited significant antitumor effects in BALB/c mice challenged intraperitoneally (i.p.) with syngeneic Meth A sarcoma when administered i.p. on days 1, 2 and 3 after challenge. Intravenous (i.v.) administration also induced antitumor effects in the tumor-bearing mice; however, subcutaneous (s.c.) administration did not. When mice were twice pretreated with 1 μg IL-18 3 days and 6 h before tumor challenge, all mice survived whereas control mice died within 3 weeks of challenge. Inhibitory effects on Meth A cell growth in vitro were not observed with either IL-18 or interferon γ. The effects of IL-18 pretreatment were abrogated by abolition of NK activity after mice had been injected with anti-asialo GM1 antibody 48 h before and, 24 h and 72 h after tumor challenge. Mice pretreated with IL-18 and surviving tumor challenge resisted rechallenge with Meth A cells but could not reject Ehrlich ascites carcinoma, and spleen cells from the resistant mice, but not control mice, exhibited cytotoxic activity against Meth A cells in vitro after restimulation with mitomycin C-treated Meth A cells for 5 days. The effector cells in the spleen cell preparations from resistant mice appear to be CD4+ cells because cytolytic activity was significantly inhibited after depletion of this subset by monoclonal antibodies and complement. In conclusion, IL-18 exhibits in vivo immunologically (primarily NK) mediated antitumor effects in mice challenged with syngeneic Meth A sarcoma and induces immunological memory and the generation of cytotoxic CD4+ cells. Received: 17 September 1996 / Accepted: 8 November 1996  相似文献   

11.
Recently it has been recognized that IL-1 plays an important role in hematopoietic regulation. Administration of 5-fluorouracil (5-FU) to mice causes prolonged neutropenia. rHIL-1 injected to mice after 5-FU, accelerated the recovery of hematopoietic progenitors and blood neutrophils. The combination of rhIL-1 and rhG-CSF reduced the neutropenic period significantly. Sublethal irradiation of mice induced profound neutropenia for 3 weeks which was associated with 80% mortality. Administration of rhIL-1 20 hours prior to or 2 hours post irradiation resulted in a significantly improved survival and rapid recovery of the neutrophil count. IL-1 administered alone or in combination with other colony stimulating factors to spontaneous breast tumor bearing mice following 5-FU therapy resulted in a rapid recovery of neutrophils, improved survival, and markedly reduced the tumor mass. Experiments in primates demonstrated that rhIL-1 administered to 5-FU treated animals shortened the neutropenic period from 30 to 17 days and increased the number of marrow progenitors responsive to other CSFs. Prolonged administration of IL-1 (14 days) to these animals resulted in a delayed neutrophil recovery as compared to animals receiving short courses of IL-1. rhIL-1 administered to primates receiving marrow grafts after lethal irradiation, did not result in rapid hematopoietic recovery. In humans, studies with CD-34 positive marrow cells showed that IL-1 had a radioprotective effect on a committed and early marrow progenitors. These data show the therapeutic potential of IL-1 in the treatment of chemoradiotherapy induced myelosuppression.  相似文献   

12.
13.
The influence of IL-1 administration on the recovery of the hemopoietic and immune systems from sublethal irradiation was assessed. Mice were irradiated (750 R) and injected twice daily with purified recombinant derived IL-1 beta (200 ng/injection). At various times after irradiation, the functional capacity of the hemopoietic and immune systems was determined. It was found that IL-1 therapy resulted in a significantly greater number of granulocyte-macrophage-CSF responsive colony-forming cells in the bone marrow of the irradiated mice on days 5 and 11 postirradiation but not at later times. In addition the radiation induced neutropenia recovered quicker in the IL-1-treated mice with significantly greater numbers of peripheral blood granulocytes being seen on days 15 and 20 after irradiation. The influence of IL-1 therapy on the recovery of the immune system was also assessed. Of note was the observation that mice receiving IL-1 therapy had chronically hypoplastic thymi. Although thymic cellularity increased with time after irradiation in the control mice, there was no such increase in the IL-1-treated mice. Similarly, the number of pre-B cells in the marrow of these mice was also diminished. Thus, in the IL-1-treated mice the regeneration of the peripheral immune function was retarded, characterized by a general lymphopenia and decreased splenic responses to mitogenic stimuli.  相似文献   

14.
The effects of in vivo ultrasound irradiation of the spleen on immunological functions were assessed with an in vitro natural killer (NK) cell cytotoxic assay. Anesthetized hamsters were exposed to 1 MHz ultrasound at intensity levels currently being used clinically for therapeutic diathermy and hyperthermia (1-5 W/cm2, for 500 sec with constant beam scanning). Hyperthermic levels in the spleen ranged from 38-43 degrees C. Significant depression of natural killer (NK) cell activity was seen 4 h after spleen irradiation as compared to sham irradiated and normal animals. A return towards normal levels was observed in experimental groups at 24 h after exposure. Sham and normal animals were not significantly different in NK activity, indicating no significant stress-related immunosuppressive effects due to handling. Differential leukocyte counts taken for each exposure condition showed significant lymphopenia at 4, 8, and 16 h after exposure, near normal levels at 24 h, and complete recovery by 48 h. The number of circulating mononuclear cells at 4 h showed a dose-related suppression as the exposure intensities were increased.  相似文献   

15.
The role of IL-23 in the development of arthritis and bone metabolism was studied using systemic IL-23 exposure in adult mice via hydrodynamic delivery of IL-23 minicircle DNA in vivo and in mice genetically deficient in IL-23. Systemic IL-23 exposure induced chronic arthritis, severe bone loss, and myelopoiesis in the bone marrow and spleen, which resulted in increased osteoclast differentiation and systemic bone loss. The effect of IL-23 was partly dependent on CD4(+) T cells, IL-17A, and TNF, but could not be reproduced by overexpression of IL-17A in vivo. A key role in the IL-23-induced arthritis was made by the expansion and activity of myeloid cells. Bone marrow macrophages derived from IL-23p19(-/-) mice showed a slower maturation into osteoclasts with reduced tartrate-resistant acid phosphatase-positive cells and dentine resorption capacity in in vitro osteoclastogenesis assays. This correlated with fewer multinucleated osteoclast-like cells and more trabecular bone volume and number in 26-wk-old male IL-23p19(-/-) mice compared with control animals. Collectively, our data suggest that systemic IL-23 exposure induces the expansion of a myeloid lineage osteoclast precursor, and targeting IL-23 pathway may combat inflammation-driven bone destruction as observed in rheumatoid arthritis and other autoimmune arthritides.  相似文献   

16.
We have previously demonstrated that lithium (Li) is an effective agent in accelerating the recovery of granulopoiesis following sublethal (2 Gy) whole body irradiation. In this report, studies are described that further define this Li-mediated recovery by measuring the levels of colony-stimulating factor (CSF) present in serum from mice administered 105 micrograms/mouse (total dose) of ultra-pure Li2CO3 for 3 days immediately following irradiation. On days 1-28 following the last lithium dose, the serum was tested for its CSF activity against both normal non-adherent derived bone marrow target cells and non-adherent marrow cells from mice administered cyclophosphamide (200 mg/kg body weight). Serum was assayed at 0.01, 0.1, 1 and 10 per cent final concentration. No significant difference in the total number of CFU-GM was observed from normal marrow using either serum from irradiated mice or lithium-treated and irradiated mice, although the irradiation did produce a 300 per cent rise in CFU-GM colonies compared to normal serum (days 4 and 10-15). From regenerating marrow, we observed a significant difference (P less than or equal to 0.01) in CFU-GM cultured with serum at 0.1 per cent concentration from irradiated and lithium-treated mice compared to irradiated mice without lithium. The presence of CSF was confirmed by its reduced activity in the presence of anti-(CSF). These results suggest (Li) may increase the sensitivity of CFU-GM to CSF, thereby producing more CFU-GM ultimately providing more circulating granulocytes.  相似文献   

17.
The defense mechanism against indigenous bacterial translocation was studied using a model of endogenous infection in X-irradiated mice. All mice irradiated with 9 Gy died from day 8 to day 15 after irradiation. The death of mice was observed in parallel with the appearance of bacteria from day 7 in various organs, and the causative agent was identified to be Escherichia coli, an indigenous bacterium translocating from the intestine. Decrease in the number of blood leukocytes, peritoneal cells and lymphocytes in Peyer's patches or mesenteric lymph nodes was observed as early as 1 day after irradiation with 6 or 9 Gy. The mitogenic response of lymphocytes from various lymphoid tissues was severely affected as well. The impairment of these parameters for host defense reached the peak 3 days after irradiation and there was no recovery. However, in vivo bactericidal activity of Kupffer cells in mice irradiated with 9 Gy was maintained in a normal level for a longer period. It was suggested that Kupffer cells play an important role in the defense against indigenous bacteria translocating from the intestine in mice.  相似文献   

18.
The effect of the combined acute whole body exposure to cadmium chloride (0.5 mg Cd2+ per kg body weight of animals) and gamma-radiation (1 Gy) on the DNA damage induction in thymocytes and thymic cellularity of mice was studied. It has been shown that CdCl2 solution injection 0.5 h before irradiation reduces the quantity of single-strand DNA breaks and alkali-labile sites in thymocytes 48 h after injection compared to gamma-radiation action only. The observed effect is accompanied by a sharp decrease of the thymic cellularity compared with the separate effects of both cadmium ions and irradiation, which masks the overall genotoxic effect of combined exposure and gives an illusion of cadmiumL ions radioprotective action. Cadmium chloride injection 24 h before irradiation leads to a significant additive increase in the single-strand DNA breaks and alkali-labile sites number as compared to the separate effects of cadmium ions and irradiation alone. At the same time the decrease in the percentage of DNA tightly bound to proteins (DNA-protein cross-links) was noted in comparison with the action of gamma-radiation only. Statistically significant changes in thymic cellularity compared with separate effects of cadmium ions and irradiation were not found. Thus, our research has shown that under a combined action of cadmium ions and gamma-radiation on thymocytes in mice at the applied doses and exposure schemes the additive effects, rather than antagonism or radioprotective effects are observed.  相似文献   

19.
IL-7 is a critical cytokine in the development of T and B cells but little is known about its activity on nonhematopoietic cells. An unexpected finding was noted in allogeneic bone marrow transplant studies using IL-7 receptor null (IL-7R alpha(-/-)) mice as recipients. These mice exhibited a significantly greater weight loss after total body irradiation compared with wild type, IL-7R alpha(+/+), mice. Pathological assessment indicated greater intestinal crypt damage in IL-7R alpha(-/-) recipients, suggesting these mice may be predisposed to gut destruction. Therefore, we determined the effect of the conditioning itself on the intestinal tract of these mice. IL-7R alpha(-/-) mice and IL-7R alpha(+/+) mice were irradiated and examined for lesions and apoptosis within the small intestine. In moribund animals, IL-7R alpha(-/-) mice had extensive damage in the small intestine, including marked ablation of the crypts and extreme shortening of villi following 1500 cGy total body irradiation. In contrast, by 8 days after irradiation, the small intestines of IL-7R alpha(+/+) mice had regenerated as distinguished by normal villus length and hyperplastic crypts. Following 750 cGy irradiation, IL-7R alpha(-/-) mice had a higher proportion of apoptotic cells in the crypts and an accompanying increase in the pro-apoptotic protein Bak was expressed in intestinal epithelial cells. These results demonstrate the increased radiosensitivity of intestinal stem cells within the crypts in IL-7R alpha(-/-) mice and a role for IL-7 in the protection of radiation-induced apoptosis in these same cells. This study describes a novel role of IL-7 in nonhematopoietic tissues.  相似文献   

20.
The effect of troxerutin on γ-radiation-induced DNA strand breaks in different tissues of mice in vivo and formations of the micronuclei were studied in human peripheral blood lymphocytes ex vivo and mice blood reticulocytes in vivo. Treatments with 1 mM troxerutin significantly inhibited the micronuclei induction in the human lymphocytes. Troxerutin protected the human peripheral blood leucocytes from radiation-induced DNA strand breaks in a concentration dependent manner under ex vivo condition of irradiation (2 Gy). Intraperitoneal administration of troxerutin (175 mg/kg body weight) to mice before and after whole body radiation exposure inhibited micronuclei formation in blood reticulocytes significantly. The administration of different doses (75, 125 and 175 mg/kg body weight) of troxerutin 1 h prior to 4 Gy γ-radiation exposure showed dose-dependent decrease in the yield of DNA strand breaks in murine blood leucocytes and bone marrow cells. The dose-dependent protection was more pronounced in bone marrow cells than in blood leucocytes. Administration of 175 mg/kg body weight of the drug (i.p.) 1 h prior or immediately after whole body irradiation of mice showed that the decrease in strand breaks depended on the post-irradiation interval at which the analysis was done. The observed time-dependent decrease in the DNA strand breaks could be attributed to enhanced DNA repair in troxerutin administered animals. Thus in addition to anti-erythrocytic, anti-thrombic, fibrinolytic and oedema-protective rheological activity, troxerutin offers protection against γ-radiation-induced micronuclei formation and DNA strand breaks and enhances repair of radiation-induced DNA strand breaks. (Mol Cell Biochem xxx: 57–68, 2005)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号