首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Heat-stable malate dehydrogenase isolated from Thermus flavus AT62 was completely inactivated by treatment with diethylpyrocarbonate. The inactivation was accompanied by the loss of 1.2 histidine residues per subunit of the enzyme. The enzyme was protected from inactivation by NADH. The enzyme was also inactivated by dye-sensitized photooxidation. Methionine residues, in addition to histidine residues, were destroyed in the inactivated enzyme. Kinetic analyses of the inactivation indicated that the pK value of the residue involved in the inactivation was 8.20 at 25.0 degrees C and 7.52 at 60.0 degrees C. From the pK values and the heat of ionization calculated from the van't Hoff plot of pKs, a histidine residue was identified to be primarily involved in the inactivation. The effect of temperature on the pK value of the essential group in this enzyme from a thermophilic organism is discussed.  相似文献   

4.
5.
1. Inactivation of yeast alcohol dehydrogenase for diethyl pyrocarbonate indicates that one histidine residue per enzyme subunit is necessary for enzymic activity. The inactivated enzyme regains its activity over a period of days. 2. Enzyme modified by diethyl pyrocarbonate can form the binary enzyme - NADH complex with the same maximum NADH-binding capacity as that of native enzyme. Modified enzyme cannot form normal ternary complexes of the type enzyme - NADH - acetamide and enzyme - NAD+ - pyrazole, which are characteristic of native enzyme. 3. The rate constant for the reaction of enzyme with diethyl pyrocarbonate has been determined over the pH range 5.5--9. The histidine residue involved has approximately the same pKa as free histidine, but is 10-fold more reactive than free histidine.  相似文献   

6.
Treatment of aconitase with phenacyl bromide prior to activation with Fe(II) and reductant results in complete, irreversible enzyme inactivation. Inactivation is due to the alkylation of a cysteine residue at the active site of the enzyme, the inactivation being inhibited by the competitive inhibitor, tricarballylate. Active enzyme is similarly inactivated, citrate affording greater protection than tricarballylate.  相似文献   

7.
1. Pig M4 lactate dehydrogenase treated in the dark with pyridoxal 5'-phosphate at pH8.5 and 25 degrees C loses activity gradually. The maximum inactivation was 66%, and this did not increase with concentrations of pyridoxal 5'-phosphate above 1 mM. 2. Inactivation may be reversed by dialysis or made permanent by reducing the enzyme with NaBH4. 3. Spectral evidence indicates modification of lysine residues, and 6-N-pyridoxyl-lysine is present in the hydrolsate of inactivated, reduced enzyme. 4. A second cycle of treatment with pyridoxal 5'-phosphate and NaBH4 further decreases activity. After three cycles only 9% of the original activity remains. 5. Apparent Km values for lactate and NAD+ are unaltered in the partially inactivated enzyme. 6. These results suggest that the covalently modified enzyme is inactive; failure to achieve complete inactivation in a single treatment is due to the reversibility of Schiff-base formation and to the consequent presence of active non-covalently bonded enzyme-modifier complex in the equilibrium mixture. 7. Although several lysine residues per subunit are modified, only one appears to be essential for activity: pyruvate and NAD+ together (both 5mM) completely protect against inactivation, and there is a one-to-one relationship between enzyme protection and decreased lysine modification. 8. NAD+ or NADH alone gives only partial protection. Substrates give virtually none. 9. Pig H4 lactate dehydrogenase is also inactivated by pyridoxal 5'-phosphate. 10. The possible role of the essential lysine residue is discussed.  相似文献   

8.
9.
10.
11.
12.
Sheep liver 6-phosphogluconate dehydrogenase is shown to be inactivated by diethylpyrocarbonate in a biphasic manner at pH 6.0, 25 degrees C. After allowing for the hydrolysis of the reagent, rate constants of 56 M-1 s-1 and 11.0 M-1 s-1 were estimated for the two processes. The complete reactivation of partially inactivated enzyme by neutral hydroxylamine, the elimination of the possibility that modification of cysteine or tyrosine residues are responsible for inactivation, and the magnitudes of the rate constants for inactivation relative to the experimentally determined value for the reaction of diethylpyrocarbonate with N alpha-acetylhistidine (2.2 M-1 s-1), all suggested that enzyme inactivation occurs solely by modification of histidine residues. Comparison of the experimental plot of residual fractional activity versus the number of modified histidine residues per subunit with simulated plots for three hypothetical models, each predicting biphasic kinetics, indicated that inactivation results from the modification of at most one essential histidine residue per subunit, although it appears that other (non-essential) histidines react independently. This histidine is thought to be His-242 and is present in the active site. Evidence in support of its role in catalysis is briefly discussed. Both 6-phosphogluconate and organic phosphate protect against inactivation, and a kinetic analysis of the protection indicated a dissociation constant of 2.1 X 10(-6) M for the enzyme--6-phosphogluconate complex. NADP+ also protected, but this might be due, at least in part, to a reduction in the effective concentration of diethylpyrocarbonate.  相似文献   

13.
Pig heart lactate dehydrogenase becomes more thermostable on increasing the degree of guanidination (conversion of lysine to homoarginine) (Minotani, N., Sekiguchi, T., Bautista, J.G. and Nosoh, Y. (1979) Biochim. Biophys. Acta 581, 334-341). The conformational change of the protein on guanidination was then examined by hydrogen-deuterium (H-2H) exchange reactions. It ws found that (i) the fluctuation degrees of peptides and tyrosine and tryptophan residues in the protein decrease in that order, (ii) two H-2H exchangeable tryptophan residues per subunit are freely accessible to solvent and the fluctuation degrees of the residues does not change on guanidination, (iii) the H-2H exchange detectable tyrosine residues are not freely accessible to solvent and become less fluctuating when 15 lysine residues per subunit are guanidinated, and (iv) the peptides become much less fluctuating on increasing the degree of guanidination. The specific activity of the enzyme decreased on guanidination. The increased thermostability of the protein on guanidination may be related to the decrease in flexibility of the molecular structure by sacrificing the enzyme activity.  相似文献   

14.
15.
Acetamidination of pig heart lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) with ethyl acetimidate resulted in an increase of thermostability, and covalent bridge formation between pairs of lysine residues is observed. Guanidination with O-methylisourea of the enzyme also increases the thermostability, but such a bridge seems not to be formed. Increased thermostability of guanidinated enzyme is considered to be due to the shift of the pK values of the lysine residues from 10.5 to 12.5 after guanidination. Modification experiments with carbodiimide reveals that the enzyme contains 4.6 pairs of neighboring lysine and carboxyl residues per subunit, and amide bonding between 3.2 pairs results in an increase of thermostability. Guanidination of 4.6 Lys/subunit of the enzyme yields an enzyme derivative with considerably increased thermostability. Salt bridge formation between the 4.6 pairs of neighboring carboxyl and guanidinated lysine residues per subunit might make a major contribution to the increased thermostability of the guanidinated enzyme.  相似文献   

16.
Lee J  Lee JE  Cho EH  Choi SY  Cho SW 《Molecules and cells》2001,12(1):121-126
Greater than 90% of the original activity of the enzymes remained after modification of histidine residues of glutamate dehydrogenase (GDH) isoproteins from bovine brains with diethyl pyrocarbonate (DEPC). This suggests that the DEPC modified histidine residues are not critically involved in the catalysis of the GDH isoproteins. The influence of DEPC modified histidine residue(s) on binding of GTP to GDH isoproteins was investigated by protection studies. These studies showed that inhibition of GDH isoproteins by GTP was protected by preincubation of GDH isoproteins with DEPC. The amount of protection was dependent on the concentration of DEPC. The GTP inhibition was fully protected by preincubation of GDH isoproteins with DEPC at saturating concentrations. These results indicate that the histidine residues may play an important role in the GTP binding on GDH isoproteins. Spectrophotometric studies showed that three histidine residues per enzyme subunit were able to react with DEPC in the absence of GTP, whereas two histidine residues per enzyme subunit interacted with DEPC when the enzymes were preincubated with GTP. These results indicate that one of the histidine residues is involved in the GTP binding domain of GDH isoproteins. The quantitative affinity chromatographic studies showed that the influence of GTP on the binding of GDH isoproteins to DEPC-Sepharose was significantly distinct for the two GDH isoproteins. GDH I was more sensitively affected by GTP than GDH II in the binding affinity for DEPC-Sepharose. ADP, another well-known allosteric regulator, showed no significant changes in the interaction of DEPC with GDH isoproteins.  相似文献   

17.
18.
The histidine residue essential for the catalytic activity of pancreatic cholesterol esterase (carboxylester lipase) has been identified in this study using sequence comparison and site-specific mutagenesis techniques. In the first approach, comparison of the primary structure of rat pancreatic cholesterol esterase with that of acetylcholinesterase and cholinesterase revealed two conserved histidine residues located at positions 420 and 435. The sequence in the region around histidine 420 is quite different between the three enzymes. However, histidine 435 is located in a 22-amino acid domain that is 47% homologous with other serine esterases. Based on this sequence homology, it was hypothesized that histidine 435 is the histidine residue essential for catalytic activity of cholesterol esterase. The role of His435 in the catalytic activity of pancreatic cholesterol esterase was then studied by the site-specific mutagenesis technique. Substitution of the histidine in position 435 with glutamine, arginine, alanine, serine, or aspartic acid abolished the ability of cholesterol esterase to hydrolyze p-nitrophenyl butyrate and cholesterol [14C]oleate. In contrast, mutagenesis of the histidine residue at position 420 to glutamine had no effect on cholesterol esterase enzyme activity. The results of this study strongly suggested that histidine 435 may be a component of the catalytic triad of pancreatic cholesterol esterase.  相似文献   

19.
20.
Pig heart aconitase reacts with one mole of phenacyl bromide per molecule to give complete inactivation due to the alkylation of a cysteine residue at the active site. A tryptic peptide containing this essential residue has been isolated and its amino acid sequence determined as Ile-Gln-Leu-Leu-Cys 1-Pro-Leu-Leu-Asn-Gln-Phe-Asp-Lys by manual methods and by the use of an automated solid phase sequencer. There is a limited similarity in amino acid sequence between this peptide and other peptides containing the cysteine residues involved in the binding of the iron-sulfur clusters of high-potential iron-sulfur protein of Rhodopseudomonas gelatinosa and rubredoxins from various bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号