共查询到20条相似文献,搜索用时 10 毫秒
1.
Photoaffinity labeling of estrogen receptors 总被引:1,自引:0,他引:1
J A Katzenellenbogen 《Federation proceedings》1978,37(2):174-178
2.
Intensive pyrethroid use in insect control has led to resistance buildup among various pests. One alternative to battle this problem envisions the combined use of synergistically acting insecticidal compounds. Pyrethroids, scorpion - and β-toxins, and brevetoxins bind to distinct receptor sites on voltage-gated sodium channels (NaChs) and modify their function. The binding affinity of scorpion -toxins to locust, but not rat-brain NaChs, is allosterically increased by pyrethroids and by brevetoxin-1. Brevetoxin-1 also increases the binding of an excitatory β-toxin to insect NaChs. These results reveal differences between insect and mammalian NaChs and may be exploited in new strategies of insect control. 相似文献
3.
Tomizawa M Wen Z Chin HL Morimoto H Kayser H Casida JE 《Journal of neurochemistry》2001,78(6):1359-1366
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel in the insect CNS and a target for major insecticides. Here we use photoaffinity labeling to approach the functional architecture of insect nAChRs. Two candidate 5-azido-6-chloropyridin-3-yl photoaffinity probes are evaluated for their receptor potencies: azidoneonicotinoid (AzNN) with an acyclic nitroguanidine moiety; azidodehydrothiacloprid. Compared to their non-azido parents, both probes are of decreased potencies at Drosophila (fruit fly) and Musca (housefly) receptors but AzNN retains full potency at the Myzus (aphid) receptor. [(3)H]AzNN was therefore radiosynthesized at high specific activity (84 Ci/mmol) as a novel photoaffinity probe. [(3)H]AzNN binds to a single high-affinity site in Myzus that is competitively inhibited by imidacloprid and nicotine and further characterized as to its pharmacological profile with various nicotinic ligands. [(3)H]AzNN photoaffinity labeling of Myzus and Homalodisca (leafhopper) detects a single radiolabeled peak in each case displaceable with imidacloprid and nicotine and with molecular masses corresponding to approximately 45 and approximately 56 kDa, respectively. The photoaffinity-labeled receptor in both Drosophila and Musca has imidacloprid- and nicotine-sensitive profiles and migrates at approximately 66 kDa. These photoaffinity-labeled polypeptides are considered to be the insecticide-binding subunits of native insect nAChRs. 相似文献
4.
J M Lowndes M Hokin-Neaverson A E Ruoho 《The Journal of biological chemistry》1984,259(16):10533-10538
A radioiodinated, photoactive cardiac glycoside derivative, 4'-(3-iodo-4-azidobenzene sulfonyl)cymarin (IAC) was synthesized and used to label (Na+K+)-ATPase in crude membrane fractions. In the dark, IAC inhibited the activity of (Na+K+)-ATPase in electroplax microsomes from Electrophorus electricus with the same I50 as cymarin. [125I]IAC binding, in the presence of Mg2+ and Pi, was specific, of high affinity (KD = 0.4 microM), and reversible (k-1 = 0.11 min-1) at 30 degrees C. At 0 degree C, the complex was stable for at least 3 h, thus permitting washing before photolysis. Analysis of [125]IAC photolabeled electroplax microsomes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (7-14%) showed that most of the incorporated radioactivity was associated with the alpha (Mr = 98,000) and beta (Mr = 44,000) subunits of the (Na+K+)-ATPase (ratio of alpha to beta labeling = 2.5). A higher molecular weight peptide (100,000), similar in molecular weight to the brain alpha(+) subunit, and two lower molecular weight peptides (12,000-15,000), which may be proteolipid, were also labeled. Two-dimensional gel electrophoresis (isoelectric focusing then SDS-PAGE, 10%) resolved the beta subunit into 12 labeled peptides ranging in pI from 4.3 to 5.5. When (Na+K+)-ATPase in synaptosomes from monkey brain cortex was photolabeled and analyzed by SDS-PAGE (7-14%), specific labeling of the alpha(+), alpha, and beta subunits could be detected (ratio of alpha(+) plus alpha to beta labeling = 35). The results show that [125I]IAC is a sensitive probe of the cardiac glycoside binding site of (Na+K+)-ATPase and can be used to detect the presence of the alpha(+) subunit in crude membrane fractions from various sources. 相似文献
5.
Photoaffinity labeling of dopamine D1 receptors 总被引:5,自引:0,他引:5
H B Niznik K R Jarvie N H Bzowej P Seeman R K Garlick J J Miller N Baindur J L Neumeyer 《Biochemistry》1988,27(20):7594-7599
A high-affinity radioiodinated D1 receptor photoaffinity probe, (+/-)-7-[125I]iodo-8-hydroxy-3-methyl-1-(4-azidophenyl)-2,3,4,5-tetra hyd ro- 1H-3-benzazepine ([125I]IMAB), has been synthesized and characterized. In the absence of light, [125I]IMAB bound in a saturable and reversible manner to sites in canine brain striatal membranes with high affinity (KD approximately equal to 220 pM). The binding of [125I]IMAB was stereoselectively and competitively inhibited by dopaminergic agonists and antagonists with an appropriate pharmacological specificity for D1 receptors. The ligand binding subunit of the dopamine D1 receptor was visualized by autoradiography following photoaffinity labeling with [125I]IMAB and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon photolysis, [125I]IMAB incorporated into a protein of apparent agents in a stereoselective manner with a potency order typical of dopamine D1 receptors. In addition, smaller subunits of apparent Mr 62,000 and 51,000 were also specifically labeled by [125I]IMAB in these species. Photoaffinity labeling in the absence or presence of multiple protease inhibitors did not alter the migration pattern of [125I]IMAB-labeled subunits upon denaturing electrophoresis in both the absence or presence of urea or thiol reducing/oxidizing reagents. [125I]IMAB should prove to be a useful tool for the subsequent molecular characterization of the D1 receptor from various sources and under differing pathophysiological states. 相似文献
6.
Photoaffinity labeling of A1-adenosine receptors 总被引:1,自引:0,他引:1
K N Klotz G Cristalli M Grifantini S Vittori M J Lohse 《The Journal of biological chemistry》1985,260(27):14659-14664
The ligand-binding subunit of the A1-adenosine receptor has been identified by photoaffinity labeling. A photolabile derivative of R-N6-phenylisopropyladenosine, R-2-azido-N6-p-hydroxyphenylisopropyladenosine (R-AHPIA), has been synthesized as a covalent specific ligand for A1-adenosine receptors. In adenylate cyclase studies with membranes of rat fat cells and human platelets, R-AHPIA has adenosine receptor agonist activity with a more than 60-fold selectivity for the A1-subtype. It competes for [3H]N6-phenylisopropyladenosine binding to A1-receptors of rat brain membranes with a Ki value of 1.6 nM. After UV irradiation, R-AHPIA binds irreversibly to the receptor, as indicated by a loss of [3H]N6-phenylisopropyladenosine binding after extensive washing; the Ki value for this photoinactivation is 1.3 nM. The p-hydroxyphenyl substituent of R-AHPIA can be directly radioiodinated to give a photoaffinity label of high specific radioactivity (125I-AHPIA). This compound has a KD value of about 1.5 nM as assessed from saturation and kinetic experiments. Adenosine analogues compete for 125I-AHPIA binding to rat brain membranes with an order of potency characteristic for A1-adenosine receptors. Dissociation curves following UV irradiation at equilibrium demonstrate 30-40% irreversible specific binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the probe is photoincorporated into a single peptide of Mr = 35,000. Labeling of this peptide can be blocked specifically and stereoselectively by adenosine receptor agonists and antagonists in a manner which is typical for the A1-subtype. The results indicate that 125I-AHPIA identifies the ligand-binding subunit of the A1-adenosine receptor, which is a peptide with Mr = 35,000. 相似文献
7.
J Barhanin D Pauron A Lombet W Hanke G Boheim M Lazdunski 《Journal de physiologie》1984,79(4):304-308
Biochemical characterization of the Tityus gamma toxin receptor associated with the voltage-sensitive Na+ channel was carried out in different tissue preparations with the use of an iodinated toxin derivative. The affinity of the toxin for the receptor is high with a dissociation constant of 4 X 10(-12) M for rat synaptosomes. The density of binding sites is in the range of 0.3 to 2 pmol/mg of protein. Toxin gamma does not seem to bind to Na+ channels located on transverse-tubule membranes of skeletal muscle, but only to Na+ channels located on the sarcolemma. Both affinity labelling and radiation inactivation analysis indicate a molecular weight for the toxin receptor of 270 000 daltons. The same molecular weight is found using the tetrodotoxin. Only one single major protein component of the Na+ channel was purified from Electrophorus electroplax, rat brain membranes and chick heart membrane using the toxin gamma as a marker. The molecular weight of this component is 230 000-270 000 daltons. Reconstitution of the purified Na+ channel into planar lipid bilayers has been carried out. Two different types of electrically excitable channels with conductances of 150 and 25 pS were detected. The activity of both channels is blocked by saxitoxin. 相似文献
8.
Olamendi-Portugal T García BI López-González I Van Der Walt J Dyason K Ulens C Tytgat J Felix R Darszon A Possani LD 《Biochemical and biophysical research communications》2002,299(4):562-568
This report describes the isolation, primary structure determination, and functional characterization of two similar toxins from the scorpion Parabuthus granulatus named kurtoxin-like I and II (KLI and KLII, respectively). KLII from P. granulatus is identical to kurtoxin from Parabuthus transvaalicus (a 63 amino-acid long toxin) whereas KLI is a new peptide containing 62 amino acid residues closely packed by four disulfide bridges with a molecular mass of 7244. Functional assays showed that both toxins, KLI and kurtoxin from P. granulatus, potently inhibit native voltage-gated T-type Ca(2+) channel activity in mouse male germ cells. In addition, KLI was shown to significantly affect the gating mechanisms of recombinant Na(+) channels and weakly block alpha(1)3.3Ca(V) channels expressed in Xenopus oocytes. KLI and kurtoxin from P. granulatus represent new probes to study the role of ion channels in germ cells, as well as in cardiac and neural tissue. 相似文献
9.
Jalali A Bosmans F Amininasab M Clynen E Cuypers E Zaremirakabadi A Sarbolouki MN Schoofs L Vatanpour H Tytgat J 《FEBS letters》2005,579(19):4181-4186
In this study, we isolated and pharmacologically characterized the first alpha-like toxin from the venom of the scarcely studied Iranian scorpion Odonthobuthus doriae. The toxin was termed OD1 and its primary sequence was determined: GVRDAYIADDKNCVYTCASNGYCNTECTKNGAESGYCQWIGRYGNACWCIKLPDEVPIRIPGKCR. Using the two-electrode voltage clamp technique, the pharmacological effects of OD1 were studied on three cloned voltage-gated Na+ channels expressed in Xenopus laevis oocytes (Na(v)1.2/beta1, Na(v)1.5/beta1, para/tipE). The inactivation process of the insect channel, para/tipE, was severely hampered by 200 nM of OD1 (EC50 = 80+/-14 nM) while Na(v)1.2/beta1 still was not affected at concentrations up to 5 microM. Na(v)1.5/beta1 was influenced at micromolar concentrations. 相似文献
10.
Photoaffinity labeling with cyclic nucleotides 总被引:4,自引:0,他引:4
11.
The photoaffinity probe [125I]aryl azidoprazosin was used to examine structural aspects of rat left ventricular alpha 1-adrenergic receptor. Autoradiography of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved proteins from photoaffinity-labeled membranes revealed a specifically labeled protein of mass 77 kDa. Adrenergic drugs competed with the photoaffinity probe for binding to the receptor in a manner expected of an alpha 1-adrenergic antagonist. Because the autoradiographic pattern was unaltered by incubating labeled membranes in gel sample buffer containing high concentrations of reducing agents, the binding component of the cardiac alpha 1-adrenergic receptor appears to be a single polypeptide chain. The photoaffinity probe specifically labeled a single protein of approximately 68 kDa in membranes of cardiac myocytes prepared from rat left ventricles. The role played by sulfhydryls in receptor structure and function was also studied. Dithiothreitol (DTT) inhibited [3H]prazosin binding to left ventricular membranes and altered both the equilibrium dissociation constant and maximal number of [3H]prazosin-binding sites but not the ability of the guanine nucleotide guanyl-5'-yl imidodiphosphate to decrease agonist affinity for the receptors. When photoaffinity-labeled membranes were incubated with 40 mM DTT for 30 min at room temperature, two specifically labeled proteins of 77 and 68 kDa were identified. The DTT-induced conversion of the 77-kDa protein to 68 kDa was irreversible with washing, but the effect of DTT on [3H]prazosin binding was reversible. Both 77- and 68-kDa proteins were observed with liver membranes even in the absence of reducing agent. We suggest that the DTT-induced conversion of the 77-kDa protein to 68 kDa is due to enhancement in protease activity by the reductant. These results document that the cardiac alpha 1-adrenergic receptor is a 77-kDa protein, similar in mass to the receptor in liver and other sites. Proteolysis likely accounts for lower Mr forms of this receptor found in cardiac myocytes and in previous publications on hepatic alpha 1-receptors. 相似文献
12.
13.
Photoaffinity labeling of (Na+ + K+)-ATPase in erythrocyte membranes with cardiotonic steroid derivatives, followed by gel electrophoresis, requires a radiolabel of very high specific activity, since the enzyme represents less than 0.05% of the total membrane protein. We report the synthesis of a radioiodinated, photosensitive derivative of the cardiac glycoside, 3-beta-O-(4-amino-4,6-dideoxy-beta-D-galactosyl)digitoxigenin, with very high specific activity. The product, [125I]iodoazidogalactosyl digitoxigenin ([125I]IAGD), is carrier-free with a specific activity of 2200 Ci/mmol. Incubation of [125I]IAGD (1.8 nM) with human erythrocyte membranes (300 micrograms protein), followed by photolysis and analysis by SDS-PAGE, showed specific radiolabeling of a polypeptide that had the same molecular weight as catalytic alpha subunit (100,000 Mr) of (Na+ + K+)-ATPase in eel electroplax microsomes. Photoaffinity labeling of erythrocyte and electroplax membranes by [125I]IAGD was specific for the cardiac glycoside binding site of (Na+ + K+)-ATPase since radiolabeling of the alpha subunit was inhibited when ouabain was included in the pre-photolysis incubation. [125I]IAGD can, therefore, be used as a probe in structural studies of human erythrocyte membrane (Na+ + K+)-ATPase. 相似文献
14.
Photoaffinity labeling of diphtheria toxin fragment A with 8-azidoadenosyl nicotinamide adenine dinucleotide. 总被引:1,自引:0,他引:1
Diphtheria toxin fragment A (DT-A) is an important enzyme in the class of mono(ADP-ribosyl)transferases. To identify peptides and amino acid residues which form the NAD(+) binding site of DT-A using a photoaffinity approach, the photoprobes nicotinamide 8-azidoadenine dinucleotide (8-N(3)-NAD) and nicotinamide 2-azidoadenine dinucleotide (2-N(3)-NAD) were synthesized. Binding studies gave an IC(50) of 2.5 microM for 8-N(3)-NAD and 5.0 microM for 2-N(3)-NAD. Irradiation of DT-A and low concentrations of [alpha-(32)P]-8-N(3)-NAD with short-wavelength UV light resulted in rapid covalent incorporation of the photoprobe into the protein. The photoincorporation was shown to be specific for the active site with a stoichiometry of photoincorporation of 75-80%. After proteolytic digestion of photolabeled DT-A, derivatized peptides were isolated using immobilized boronate affinity chromatography followed by reversed phase HPLC. Radiolabeled peptides originating from two regions of the protein were identified. Chymotryptic digestion produced labeled peptides corresponding to His(21)-Gln(32) and Lys(33)-Phe(53). Lys-C digestion gave overlapping peptides Ser(11)-Lys(33) and Ser(40)-Lys(59). Tyr(27) was identified as the site of photoinsertion within the peptide His(21)-Gln(32) on the basis of the absence of PTH-Tyr at the predicted cycle during sequence analysis and by the lack of predicted chymotryptic cleavage at Tyr(27). Within the second modified peptide Ser(40)-Lys(59), Trp(50) is the most probable site of modification. Identification of Tyr(27) as a site of photoinsertion is in agreement with its placement in the NAD binding site of the X-ray structure of the proenzyme DT-NAD complex [Bell, C. E., and Eisenberg, D. (1996) Biochemistry 35, 1137]. Trp(50) is far from the adenine ring in the crystallographic model; however, site-directed mutagenesis studies suggest that Trp(50) is a major determinant of NAD binding affinity [Wilson, B. A., Blanke, S. R., Reich, K. A., and Collier, R. J. (1994) J. Biol. Chem. 269, 23296-23301]. 相似文献
15.
16.
17.
Corzo G Escoubas P Villegas E Karbat I Gordon D Gurevitz M Nakajima T Gilles N 《Biochemistry》2005,44(5):1542-1549
Delta-palutoxins from the spider Paracoelotes luctuosus (Araneae: Amaurobiidae) are 36-37 residue long peptides that show preference for insect sodium channels (NaChs) and modulate their function. Although they slow NaCh inactivation in a fashion similar to that of receptor site 3 modifiers, such as scorpion alpha-toxins, they actually bind with high affinity to the topologically distinct receptor site 4 of scorpion beta-toxins. To resolve this riddle, we scanned by Ala mutagenesis the surface of delta-PaluIT2, a delta-palutoxin variant with the highest affinity for insect NaChs, and compared it to the bioactive surface of a scorpion beta-toxin. We found three regions on the surface of delta-PaluIT2 important for activity: the first consists of Tyr-22 and Tyr-30 (aromatic), Ser-24 and Met-28 (polar), and Arg-8, Arg-26, Arg-32, and Arg-34 (basic) residues; the second is made of Trp-12; and the third is made of Asp-19, whose substitution by Ala uncoupled the binding from toxicity to lepidopteran larvae. Although spider delta-palutoxins and scorpion beta-toxins have developed from different ancestors, they show some commonality in their bioactive surfaces, which may explain their ability to compete for an identical receptor (site 4) on voltage-gated NaChs. Yet, their different mode of channel modulation provides a novel perspective about the structural relatedness of receptor sites 3 and 4, which until now have been considered topologically distinct. 相似文献
18.
Photoaffinity labeling of parathyroid hormone receptors in clonal rat osteosarcoma cells 总被引:4,自引:0,他引:4
C Shigeno Y Hiraki D P Westerberg J T Potts G V Segre 《The Journal of biological chemistry》1988,263(8):3864-3871
A photoreactive derivative of a sulfur-free bovine parathyroid hormone (PTH) analogue, [Nle8,N-epsilon-(4-azido-2-nitrophenyl)Lys13,Nle18,Tyr34]bovine PTH-(1-34)-NH2 (NAP-NlePTH), was purified from the products of the reaction of [Nle8,Nle18,Tyr34]bovine PTH-(1-34)-NH2 (NlePTH) with 4-fluoro-3-nitro-phenylazide and was used to identify binding components of the PTH receptor in clonal rat osteosarcoma cells (ROS 17/2.8). The purified analogue, NAP-NlePTH, is a fully active agonist in three different ROS 17/2.8 cell bioassays: 1) specific binding to saturable PTH receptors; 2) stimulation of cyclic AMP accumulation; and 3) inhibition of cellular alkaline phosphatase activity; this analogue gave dose response curves parallel to and 25-33% as potent as its parent molecule, NlePTH. Radioiodinated NAP-NlePTH (125I-labeled NAP-NlePTH) retained maximal receptor-binding potency. Radioligand saturation studies in intact cells showed that the Kd of PTH receptors for the photoligand was slightly less than that for 125I-labeled NlePTH (2.8 and 0.8 nM, respectively), but that the Bmax was essentially identical for both radioligands (8 fmol/10(5) cells). Photoaffinity labeling of ROS 17/2.8 cells revealed several 125I-labeled macromolecular components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One predominant 125I-labeled band, having an apparent Mr of 80,000 daltons (including Mr = 4,347 ligand; hereafter referred to as the Mr = 80,000 protein), was consistently demonstrated in both reducing and nonreducing conditions. Its labeling was completely inhibited by coincubation with NlePTH (10 nM) at 26-fold molar excess to the photoligand, but not by biologically inactive PTH fragments or unrelated hormone. Labeling of several other macromolecular components persisted in the presence of NlePTH (1 microM). Only the labeling of the Mr = 80,000 protein showed saturation kinetics for photoaffinity labeling; the dose of 125I-labeled NAP-NlePTH (0.8 nM) to half-saturate labeling of the Mr = 80,000 protein was close to the Kd (2.8 nM) of specific binding of the photoligand to receptors in intact ROS 17/2.8 cells. Pretreatment of the cells with NlePTH and dexamethasone led to the predicted proportional decrease or increase, respectively, in labeling of the Mr = 80,000 protein. Our data, using a highly purified photoactive derivative of PTH, having carefully defined chemical and biological properties, show a plasma membrane component of Mr = 80,000 in ROS 17/2.8 cells that possesses the affinity, binding capacity, and physiological characteristics of the PTH receptor. 相似文献
19.
Photoaffinity labeling of bacteriorhodopsin 总被引:1,自引:0,他引:1
14C-Labeled optically pure 3S- and 3R-(diazoacetoxy)-all-trans-retinals were incorporated separately into bacterioopsin to reconstitute functional bacteriorhodopsin (bR) analogues, 3S- and 3R-diazo-bRs. UV irradiation at 254 nm generated highly reactive carbenes, which cross-linked the radiolabeled retinals to amino acid residues in the vicinity of the beta-ionine ring. The 3S- and 3R-diazo analogues were found to cross-link, respectively, to cyanogen bromide fragments CN 7/CN9 and CN 8/CN 9. More specifically, Thr121 and Gly122 in fragment CN 7 were found to be cross-linked to the 3S-diazo analogue. The identification of cross-linked residues and fragments favors assignments of the seven helices A-G-F-E-D-C-B or B-C-D-E-F-G-A to helices 1-2-3-4-5-6-7 in the two-dimensional electron density map (Henderson et al., 1975, 1986; Mogi et al., 1987). The present results show that the chromophore chain is oriented with the ionone ring inclined toward the outside of the membrane (the 9-methyl group also faces the extracellular side of the membrane). 相似文献
20.
Strugatsky D Zilberberg N Stankiewicz M Ilan N Turkov M Cohen L Pelhate M Gilles N Gordon D Gurevitz M 《Biochemistry》2005,44(25):9179-9187
We isolated from the venom of the scorpion Leiurus quinquestriatus hebraeus an extremely active anti-insect selective depressant toxin, Lqh-dprIT(3). Cloning of Lqh-dprIT(3) revealed a gene family encoding eight putative polypeptide variants (a-h) differing at three positions (37A/G, 50D/E, and 58N/D). All eight toxin variants were expressed in a functional form, and their toxicity to blowfly larvae, binding affinity for cockroach neuronal membranes, and CD spectra were compared. This analysis links Asn-58, which appears in variants a-d, to a toxin conformation associated with high binding affinity for insect sodium channels. Variants e-h, bearing Asp-58, exhibit a different conformation and are less potent. The importance of Asn-58, which is conserved in other depressant toxins, was further validated by construction and analysis of an N58D mutant of the well-characterized depressant toxin, LqhIT(2). Current and voltage clamp assays using the cockroach giant axon have shown that despite the vast difference in potency, the two types of Lqh-dprIT(3) variants (represented by Lqh-dprIT(3)-a and Lqh-dprIT(3)-e) are capable of blocking the action potentials (manifested as flaccid paralysis in blowfly larvae) and shift the voltage dependence of activation to more negative values, which typify the action of beta-toxins. Moreover, the stronger and faster shift in voltage dependence of activation and lack of tail currents observed in the presence of Lqh-dprIT(3)-a suggest an extremely efficient trapping of the voltage sensor compared to that of Lqh-dprIT(3)-e. The current clamp assays revealed that repetitive firing of the axon, which is reflected in contraction paralysis of blowfly larvae, can be obtained with either the less potent Lqh-dprIT(3)-e or the highly potent Lqh-dprIT(3)-a at more negative membrane potentials. Thus, the contraction symptoms in flies are likely to be dominated by the resting potential of neuronal membranes. This study clarifies the electrophysiological basis of the complex symptoms induced by scorpion depressant toxins in insects, and highlights for the first time molecular features involved in their activity. 相似文献