首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agmatine is an endogenous amine derived from the decarboxylation of arginine by arginine decarboxylase (ADC), and metabolized to putrescine by agmatinase. Exogenously administered agmatine has several biological actions including its ability to potentiate morphine analgesia and block symptoms of morphine tolerance/withdrawal in rats. To investigate the role of endogenous agmatine in this action, we sought to determine whether chronic exposure to morphine and induction of withdrawal modulate the synthesis of agmatine in rat brain and other tissues. Exposure of rats to morphine for three days significantly decreases the activity of ADC and the levels of agmatine in rat liver, kidney, brain, aorta and intestine with no changes in agmatinase activity. The precipitation of withdrawal syndrome by injecting naloxone further decreases ADC activity and agmatine levels in these tissues. We conclude that endogenous agmatine may play an important role in regulating morphine tolerance/dependence and withdrawal symptoms.  相似文献   

2.
3.
Upon mutation of Asp153 by asparagine, the catalytic activity of agmatinase (agmatine ureohydrolase, EC 3.5.3.11) from Escherichia coli was reduced to about 5% of wild-type activity. Tryptophan emission fluorescence (lambdamax = 340 nm), and CD spectra were nearly identical for wild-type and D153N agmatinases. The Km value for agmatine (1.6 +/- 0.1 mm), as well as the Ki for putrescine inhibition (12 +/- 2 mm) and the interaction of the enzyme with the required metal ion, were also not altered by mutation. Three-dimensional models, generated by homology modelling techniques, indicated that the side chains of Asp153 and Asn153 can perfectly fit in essentially the same position in the active site of E. coli agmatinase. Asp153 is suggested to be involved, by hydrogen bond formation, in the stabilization and orientation of a metal-bound hydroxide for optimal attack on the guanidinium carbon of agmatine. Thus, the disruption of this hydrogen bond is the likely cause of the greately decreased catalytic efficiency of the D153N variant.  相似文献   

4.
5.
Abstract: Agmatinase, the enzyme that hydrolyzes agmatine to form putrescine and urea in lower organisms, was found in rat brain. Agmatinase activity was maximal at pH 8–8.5 and had an apparent K m of 5.3 ± 0.99 m M and a V max of 530 ± 116 nmol/mg of protein/h. After subcellular fractionation, most of the enzyme activity was localized in the mitochondrial matrix (333 ± 5 nmol/mg of protein/h), where it was enriched compared with the whole-brain homogenate (7.6–11.8 nmol/mg of protein/h). Within the CNS, the highest activity was found in hypothalamus, a region rich in imidazoline receptors, and the lowest in striatum and cortex. It is interesting that other agmatine-related molecules such as arginine decarboxylase, which synthesizes agmatine, and I2 imidazoline receptors, for which agmatine is an endogenous ligand, are also located in mitochondria. The results show the existence of rat brain agmatinase, mainly located in mitochondria, indicating possible degradation of agmatine by hydrolysis at its sites of action.  相似文献   

6.
Agmatinase, an ureohydrolase belonging to the arginase family, is widely expressed in mammalian tissues including the brain. Here, it may serve two different functions, the inactivation of the arginine derivative agmatine, a putative neurotransmitter, and the formation of the diamine putrescine. In order to identify the cellular sources of agmatinase expression in the brain, we generated a polyclonal monospecific antibody against recombinant rat agmatinase. With immunocytochemistry, selected areas of rat and human brain were screened. Clearly, in both species agmatinase-like immunoreactivity was predominantly detected in distinct populations of neurons, especially cortical interneurons. Also, principal neurons in limbic regions like the habenula and in the cerebellum robustly expressed agmatinase protein. When comparing the overall agmatinase expression with immunocytochemical data available for agmatine and polyamine biosynthetic enzymes, the observed pattern may argue in favor of an agmatine inactivating function rather than fueling the alternative pathway of polyamine synthesis. The putative neurotransmitter agmatine is seemingly involved with mental disorders. Therefore, agmatinase may be similarly important for pathogenesis. The normal expression profile of the protein as described here may therefore be altered under pathological conditions.  相似文献   

7.
The interaction of Escherichia coli agmatinase (EC 3.5.3.11) with the substrate guanidinium group was investigated by kinetic and site-directed mutagenesis studies. Putrescine and guanidinium ions (Gdn+) were slope-linear, competitive inhibitors with respect to agmatine and their bindings to the enzyme were not mutually exclusive. By site-directed mutagenesis, the E274A variant exhibiting about 1-2% of wild-type activity was obtained. Mutation produced a moderate, but significant, increase in the Km value for agmatine (from 1.1 +/- 0.2 mM to 6.3 +/- 0.3 mM) and the Ki value for competitive inhibition by Gdn+ (from 15.0 +/- 0.1 mM to 44.2 +/- 2.1 mM), but the Ki value for putrescine inhibition (2.8 +/- 0.2 mM) was not altered. The tryptophan fluorescence properties (lambdamax = 342 nm) and circular dichroism spectra were not significantly altered by the Glu274 --> Ala mutation. The dimeric structure of the enzyme was also maintained. We conclude that Glu274 is involved in binding and positioning of the guanidinium moiety of the substrate for efficient catalysis. A kinetic mechanism involving rapid equilibrium random release of products is proposed for E. coli agmatinase.  相似文献   

8.
Agmatinase catalyzes the hydrolysis of agmatine into putrescine and urea, and agmatine (decarboxylated l-arginine) plays several roles in mammalian tissues, including neurotransmitter/neuromodulatory actions in the brain. Injection of agmatine in animals produces anticonvulsant, antineurotoxic and antidepressant-like actions. Information regarding the enzymatic aspects of agmatine metabolism in mammals, especially related to its degradation, is relatively scarce. The explanation for this is the lack of enzymatically active preparations of mammalian agmatinase. Recently, we have cloned a protein from a cDNA rat brain library having agmatinase activity although its amino acid sequence greatly differs from all known agmatinases, we called agmatinase-like protein. In this work, we analyzed the expression of this enzyme in the rat brain by means of RT-PCR and immunohistochemical analysis using a polyclonal antibody generated against the recombinant agmatinase-like protein. The agmatinase-like protein was detected in the hypothalamus in glial cells and arcuate nucleus neurons, and in hippocampus astrocytes and neurons, but not in brain cortex. In general, detected localization of agmatinase-like protein coincides with that described for its substrate agmatine and our results help to explain several reported effects of agmatine in the brain. Concretely, a role in the regulation of intracellular concentrations of the neurotransmitter/neuromodulator agmatine is suggested for the brain agmatinase-like protein.  相似文献   

9.
The degradation of agmatine to succinate by Klebsiella aerogenes occurs in five steps. The enzyme catalyzing the first step, agmatinase, is induced by agmatine. The enzymes catalyzing the second and third steps, putrescine aminotransferase and 4-aminobutyraldehyde dehydrogenase, are induced by putrescine and also by their product, 4-aminobutyrate. The enzymes catalyzing the fourth and fifth steps, 4-aminobutyrate aminotransferase and succinate semialdehyde dehydrogenase, are induced by 4-aminobutyrate. This compound also serves as gratuitous inducer of the catabolic acetylornithine aminotransferase. The formation of the enzymes responsible for agmatine degradation is regulated not only by induction, but also by catabolite repression and activation by glutamine synthetase.  相似文献   

10.
To examine the interaction of human arginase II (EC 3.5.3.1) with substrate and manganese ions, the His120Asn, His145Asn and Asn149Asp mutations were introduced separately. About 53% and 95% of wild-type arginase activity were expressed by fully manganese activated species of the His120Asn and His145Asn variants, respectively. The K(m) for arginine (1.4-1.6 mM) was not altered and the wild-type and mutant enzymes were essentially inactive on agmatine. In contrast, the Asn149Asp mutant expressed almost undetectable activity on arginine, but significant activity on agmatine. The agmatinase activity of Asn149Asp (K(m) = 2.5 +/- 0.2 mM) was markedly resistant to inhibition by arginine. After dialysis against EDTA, the His120Asn variant was totally inactive in the absence of added Mn(2+) and contained < 0.1 Mn(2+).subunit(-1), whereas wild-type and His145Asn enzymes were half active and contained 1.1 +/- 0.1 Mn(2+).subunit(-1) and 1.3 +/- 0.1 Mn(2+).subunit(-1), respectively. Manganese reactivation of metal-free to half active species followed hyperbolic kinetics with K(d) of 1.8 +/- 0.2 x 10(-8) M for the wild-type and His145Asn enzymes and 16.2 +/- 0.5 x 10(-8) m for the His120Asn variant. Upon mutation, the chromatographic behavior, tryptophan fluorescence properties (lambda(max) = 338-339 nm) and sensitivity to thermal inactivation were not altered. The Asn149-->Asp mutation is proposed to generate a conformational change responsible for the altered substrate specificity of arginase II. We also conclude that, in contrast with arginase I, Mn(2+) (A) is the more tightly bound metal ion in arginase II.  相似文献   

11.
Native and wild-type recombinant human liver arginases (EC 3.5.3.1) were photoinactivated by Rose bengal, and protection was afforded by the competitive inhibitor l-lysine. The dissociation constant for the enzyme-protector complex was essentially equal to the corresponding K(i) value. Upon mutation of His141 by phenylalanine, the enzyme activity was reduced to 6-10% of wild-type activity, with no changes in K(m) for arginine or K(i) for l-lysine or l-ornithine. The subunit composition of active enzyme was not altered by mutation, but the mutant H141F was markedly more sensitive to trypsin inactivation and completely insensitive to inactivation by diethyl pyrocarbonate (DEPC) and photoinactivation. Species with histidine groups blocked with DEPC were also insensitive to photoinactivation. We conclude that His141, which is the target for both inactivating procedures, is not involved in substrate binding, but plays a critical, albeit not essential role in the hydrolysis of enzyme-bound substrate.  相似文献   

12.
A rat brain cDNA encoding for a novel protein with agmatinase activity was cloned and functionally expressed. The protein was expressed as a histidine-tagged fusion product with a molecular weight of about 63 kDa. Agmatine hydrolysis was strictly dependent on Mn(2+); K(m) and k(cat) values were 2.5+/-0.2 mM and 0.8+/-0.2 s(-1), respectively. The product putrescine was a linear competitive inhibitor (K(i)=5+/-0.5 mM). The substrate specificity, metal ion requirement and pH optimum (9.5) coincide with those reported for Escherichia coli agmatinase, the best characterized of the agmatinases. However, as indicated by the k(cat)/K(m) (320 M(-1)s(-1)), the recombinant protein was about 290-fold less efficient than the bacterial enzyme. The deduced amino sequence revealed great differences with all known agmatinases, thus excluding the protein from the arginase family. It was, however, highly identical (>85%) to the predicted sequences for fragments of hypothetical or unnamed LIM domain-containing proteins. As a suggestion, the agmatinase activity is adscribed to a protein with an active site that promiscuously catalyze a reaction other than the one it evolved to catalyze.  相似文献   

13.
Agmatine is the product of arginine decarboxylation and can be hydrolyzed by agmatinase to putrescine, the precursor for biosynthesis of higher polyamines, spermidine, and spermine. Besides being an intermediate in polyamine metabolism, recent findings indicate that agmatine may play important regulatory roles in mammals. Agmatinase is a binuclear manganese metalloenzyme and belongs to the ureohydrolase superfamily that includes arginase, formiminoglutamase, and proclavaminate amidinohydrolase. Compared with a wealth of structural information available for arginases, no three-dimensional structure of agmatinase has been reported. Agmatinase from Deinococcus radiodurans, a 304-residue protein, shows approximately 33% of sequence identity to human mitochondrial agmatinase. Here we report the crystal structure of D. radiodurans agmatinase in Mn(2+)-free, Mn(2+)-bound, and Mn(2+)-inhibitor-bound forms, representing the first structure of agmatinase. It reveals the conservation as well as variation in folding, oligomerization, and the active site of the ureohydrolase superfamily. D. radiodurans agmatinase exists as a compact homohexamer of 32 symmetry. Its binuclear manganese cluster is highly similar but not identical to the clusters of arginase and proclavaminate amidinohydrolase. The structure of the inhibited complex reveals that inhibition by 1,6-diaminohexane arises from the displacement of the metal-bridging water.  相似文献   

14.
The H126N and H151N variants of Escherichia coli agmatinase (EC 3.5.3.11) were produced by site-directed mutagenesis, and their kinetic and structural properties were examined. About 51% and 30% of wild-type activity were expressed by fully manganese activated species of the H126N and H151N variants, respectively. Mutations were not accompanied by changes in the K(m) value for arginine (1.2+/-0.3 mM), K(i) value for putrescine inhibition (3.2+/-0.4 mM), molecular weight (M(r) 67,000+/-2000), tryptophan fluorescence properties (lambda(max) = 342 nm) or CD spectra of the enzyme. However, the interaction with the required manganese ions was significantly altered, as indicated by the effects of dialysis of the enzymes against metal-free buffer. We conclude that replacement of His151 with asparagine results in the loss of a catalytically essential Mn(2+) upon dialysis and concomitant reversible inactivation of the H151N mutant, and that the affinity of a more weakly bound Mn(2+) is decreased in the H126N variant.  相似文献   

15.
Light microscopic evidence suggested a synaptic role for agmatinase, an enzyme capable of inactivating the putative neurotransmitter and endogenous anti-depressant agmatine. Using electron microscopy and an alternative pre-embedding approach referred to as virtual pre-embedding, agmatinase was localised pre- and postsynaptically, to dendritic spines, spine and non-spine terminals, and dendritic profiles. In dendritic spines, labelling displayed a tendency towards the postsynaptic density. These results further strengthen a synaptic role for agmatine and strongly suggest a regulatory role for synaptically expressed agmatinase.  相似文献   

16.
Enterococcus faecalis makes ATP from agmatine in three steps catalyzed by agmatine deiminase (AgDI), putrescine transcarbamylase (PTC), and carbamate kinase (CK). An antiporter exchanges putrescine for agmatine. We have cloned the E. faecalis ef0732 and ef0734 genes of the reported gene cluster for agmatine catabolism, overexpressed them in Escherichia coli, purified the products, characterized them functionally as PTC and AgDI, and crystallized and X-ray diffracted them. The 1.65-Angstroms-resolution structure of AgDI forming a covalent adduct with an agmatine-derived amidine reactional intermediate is described. We provide definitive identification of the gene cluster for agmatine catabolism and confirm that ornithine is a genuine but poor PTC substrate, suggesting that PTC (found here to be trimeric) evolved from ornithine transcarbamylase. N-(Phosphonoacetyl)-putrescine was prepared and shown to strongly (K(i) = 10 nM) and selectively inhibit PTC and to improve PTC crystallization. We find that E. faecalis AgDI, which is committed to ATP generation, closely resembles the AgDIs involved in making polyamines, suggesting the recruitment of a polyamine-synthesizing AgDI into the AgDI pathway. The arginine deiminase (ADI) pathway of arginine catabolism probably supplied the genes for PTC and CK but not those for the agmatine/putrescine antiporter, and thus the AgDI and ADI pathways are not related by a single "en bloc" duplication event. The AgDI crystal structure reveals a tetramer with a five-blade propeller subunit fold, proves that AgDI closely resembles ADI despite a lack of sequence identity, and explains substrate affinity, selectivity, and Cys357-mediated-covalent catalysis. A three-tongued agmatine-triggered gating opens or blocks access to the active center.  相似文献   

17.
Oshima T 《Amino acids》2007,33(2):367-372
Summary. Recent research progress on polyamines in extreme thermophiles is reviewed. Extreme thermophiles produce two types of unique polyamines; one is longer polyamines such as caldopentamine and caldohexamine, and the other is branched polyamines such as tetrakis(3-aminopropyl)ammonium. The protein synthesis catalyzed by a cell-free extract of Thermus thermophilus, an extreme thermophile, required the presence of a polyamine and the highest activity was found in the presence of tetrakis(3-aminopropyl)ammonium. In vitro experiments, longer polyamines efficiently stabilized double stranded nucleic acids and a branched polyamine, tetrakis(3-aminropyl)ammonium, stabilized stem-and-loop structures. In T. thermophilus, polyamines are synthesized from arginine by a new metabolic pathway; arginine is converted to agmatine and then agmatine is aminopropylated to N1-aminopropylagmatine which is converted to spermidine by an enzyme coded by a gene homologous to speB (a gene for agmatinase). In this new pathway spermidine is not synthesized from putrescine. Reverse genetic studies indicated that the unique polyamines are synthesized from spermidine.  相似文献   

18.
19.
20.
Enterococcus faecalis ATCC 11700 is able to use arginine and the diamine agmatine as a sole energy source. Via the highly homologous deiminase pathways, arginine and agmatine are converted into CO2, NH3, and the end products ornithine and putrescine, respectively. In the arginine deiminase pathway, uptake of arginine and excretion of ornithine are mediated by an arginine-ornithine antiport system. The translocation of agmatine was studied in whole cells grown in the presence of arginine, agmatine, or glucose. Rapid uncoupler-insensitive uptake of agmatine was observed only in agmatine-grown cells. A high intracellular putrescine pool was maintained by these cells, and this pool was rapidly released by external putrescine or agmatine but not by arginine or ornithine. Kinetic analysis revealed competitive inhibition for uptake between putrescine and agmatine. Agmatine uptake by membrane vesicles was observed only when the membrane vesicles were preloaded with putrescine. Uptake of agmatine was driven by the outwardly directed putrescine concentration gradient, which is continuously sustained by the metabolic process. Uptake of agmatine and extrusion of putrescine by agmatine-grown cells of E. faecalis appeared to be catalyzed by an agmatine-putrescine antiporter. This transport system functionally resembled the previously described arginine-ornithine antiport, which was exclusively induced when the cells were grown in the presence of arginine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号