首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Zymomonas mobilis alcohol dehydrogenase II gene (adhB) was overexpressed 7- to 14-fold on a recombinant plasmid, accompanied by a small decrease in growth rate. A fragment containing the truncated gene with promoter reduced expression from the chromosomal gene as measured immunologically and enzymatically, consistent with the presence of a trans-active regulatory factor and positive regulatory control. Both the complete gene and the promoter fragment increased pyruvate decarboxylase and glucokinase activities, with no effect on alcohol dehydrogenase I or eight glycolytic enzymes. Tandem promoters from adhB expressed beta-galactosidase at higher levels than did either promoter alone in operon fusions. Addition of 50 microM zinc sulfate in minimal medium reduced the expression of adhB and of the operon fusions. Abundant but inactive alcohol dehydrogenase II was produced in iron-limited cells. This inactive enzyme did not form intracellular aggregates, and no morphological changes were apparent by transmission electron microscopy.  相似文献   

2.
Sub-cloning experiments aimed at precisely locating the E. coli aroA gene, which encodes the shikimate pathway enzyme 5-enolpyruvylshikimate 3-phosphate synthase, showed that in certain constructions, which remain capable of complementing an auxotrophic aroA mutation, expression of aroA is reduced. DNA sequence analysis revealed that a sequence approx. 1200 base pairs (bp) upstream of aroA is necessary for its expression. An open reading frame was identified in this region which encodes a protein of 362 amino acids with a calculated Mr of 39,834 and which ends 70 bp before the start of the aroA coding sequence. This gene has been identified as serC, the structural gene for 3-phosphoserine aminotransferase, an enzyme of the serine biosynthetic pathway. Both genes are expressed as a polycistronic message which is transcribed from a promotor located 58 bp upstream of serC. Evidence is presented which confirms that the aroA and serC genes constitute an operon which has the novel feature of encoding enzymes from two different amino acid biosynthetic pathways.  相似文献   

3.
4.
5.
6.
The catalytic residues of levansucrase (sucrose:2,6-beta-D-fructan 6-beta-D-fructosyltransferase, EC 2.4.1.10) from Zymomonas mobilis were analyzed by random mutation and site-directed mutagenesis. We found that substitution of Glu278 with Asp and His reduced the k(cat) for sucrose hydrolysis 30- and 210-fold, respectively, strongly suggesting Glu278 plays a key role in catalyzing this reaction. Given the likelihood that another acidic amino residue was also involved, we constructed variants in which acidic amino acids located within homologous regions among bacterial levansucrases and fructosyltransferases were substituted, and found that substitution of Asp194, located in homologous region III, abolished sucrose hydrolysis. In addition, Glu278 was determined to be situated within the DXXER motif in homologous region IV conserved among bacterial levansucrases and fructosyltransferases, while Asp194 was within the triplet RDP motif conserved among bacterial levansucrases, fructosyltransferases and fructofuranosidases. Finally, comparison of our findings with published data on other site-directed mutated enzymes indicated His296, also located in homologous region IV, is crucial for catalysis of the transfructosylation reaction.  相似文献   

7.
Gold-labeled antibodies were used to examine the subcellular locations of 11 glycolytic and fermentative enzymes in Zymomonas mobilis. Glucose-fructose oxidoreductase was clearly localized in the periplasmic region. Phosphogluconate lactonase and alcohol dehydrogenase I were concentrated in the cytoplasm near the plasma membrane. The eight remaining enzymes were more evenly distributed within the cytoplasmic matrix. Selected enzyme pairs were labeled on opposite sides of the same thin section to examine the frequency of colocalization. Results from these experiments provide evidence that glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and alcohol dehydrogenase I form an enzyme complex.  相似文献   

8.
Tryptophan auxotrophs were isolated and used to analyze the regulation of tryptophan biosynthesis in Zymomonas mobilis. Twelve tryptophan auxotrophs were cassified as trp E, B or A based on accumulation of, or growth on, indole and anthranilic acid. Trp B mutants were found to accumulate indole when grown on limiting, but not on excess tryptophan, suggesting that tryptophan plays a role in regulating its biosynthesis. Tryptophan synthase and indoleglycerol phosphate synthase specific activities were measured in the wild-type strain and two trp mutants grown in limiting or excess tryptophan. Neither activity was repressed by exogenous tryptophan.Abbreviations CDRP O-(carboxyphenol amino)-1 deoxyribulose 5-phosphate - IGPS indoleglycerol phosphate synthase - TS tryptophan synthase Dedicated in memory of Dr. O. H. Smith  相似文献   

9.
10.
11.
12.
13.
Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 on the B. subtilis chromosome, it encodes five poly-peptides with extensive similarity to enzymes involved in glycogen and starch metabolism in both prokaryotes and eukaryotes. The operon is presumably expressed by an EσE-controlled promoter, which was previously identified downstream from trnB. We have observed glycogen biosynthesis in B. subtilis exclusively on media containing carbon sources that allow efficient sporulation. Sporulation-independent synthesis of glycogen occurred after integration of an EσA controlled promoter upstream of the operon.  相似文献   

14.
15.
Bacillus subtilis ccpA mutant strains exhibit two distinct phenotypes: they are defective in catabolite repression, and their growth on minimal media is strongly impaired. This growth defect is largely due to a lack of expression of the gltAB operon. However, growth is impaired even in the presence of glutamate. Here, we demonstrate that the ccpA mutant strain needs methionine and the branched-chain amino acids for optimal growth. The control of expression of the ilv-leu operon by CcpA provides a novel regulatory link between carbon and amino acid metabolism.  相似文献   

16.
17.
Summary From continuous culture studies it has been shown that the protein concentrations of strains of Z. mobilis (62–68%) were appreciably higher than for the yeast S.uvarum (45–50%). The DNA and RNA contents were similar for the two species. Comparison of the essential amino acids indicated that Z.mobilis did not exhibit the deficiency in methionine which was apparent in the yeast. Such a study of the macromolecular composition of cells of Z.mobilis is important in assessing its by-product nutritional value for animal feed supplementation.  相似文献   

18.
The gene encoding the enzyme gluconolactonase (D-glucono-delta-lactone lactonohydrolase, EC 3.1.1.17) has been isolated from a recombinant library of genomic Zymomonas mobilis DNA, by detection of enzyme activity in recombinant clones. The gene encoded a protein of 320 amino acids, which is processed to the mature enzyme of 285 amino acids (31079 Da) by cleavage at an Ala-Ala bond, as determined from N-terminal sequencing of the purified enzyme. A minor sequence commencing at amino acid 6 is suggestive of an alternative start of translation at the ATG codon of amino acid 5; in this case the expressed enzyme would remain cytoplasmic, whereas it is presumed that the main portion is directed to the membrane of periplasm by the leader sequence.  相似文献   

19.
Summary The Zymomonas mobilis gene sacB that encodes the extracellular levansucrase was cloned and expressed in Escherichia coli. The gene product exhibited both sucrose hydrolysis activity and levan forming capability. Sub-cellular fractionation of E. coli carrying pLSS41 revealed that about 95% of the total sucrase activity was detected in the cytoplasmic fraction. The levansucrase gene was overexpressed (about hundred fold) in E. coli under T7 polymerase expression system. Nucleotide sequence analysis of this gene revealed an open reading frame of 1269 bp long coding for a protein of 423 amino acids with a molecular mass of 46.7 KDa. The deduced amino acid sequence was identical to the N-terminal amino acids of protein A51 of Z. mobilis ZM4. Therefore, the product of sacB is levansucrase. This is the first extracellular enzyme of Z. mobilis sequenced which does not possess a signal sequence. This gene is located 198 bp upstream of sacC gene encoding for the extracellular sucrase forming a gene cluster  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号