首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Seedlings of Eucalyptus globulus growing in soil columns were subjected to a 24 day soil drying treatment. Water and solute potentials of both young expanding and fully expanded leaves declined under reduced soil water availability, while slightly higher turgor was sustained by the fully expanded leaves. Although leaf area of unwatered seedlings was smaller, the corresponding leaf dry weight was quite similar to that of well-watered seedlings. Soon after rewatering, leaf area of plants experiencing water shortage was comparable to that of well-watered plants. It seems that a difference in wall properties between juvenile and mature leaves allows for an effective pattern of water use by eucalypt plants growing in drying soil. Some stomatal opening is sustained and therefore, presumably, some carbon may be fixed, keeping the carbon balance of the whole plant positive, and allowing a continuous cell division despite the limited water supply. The highest root density of both well-watered and unwatered plants was found in the upper soil layers. However, root growth of unwatered seedlings was gradually increased in the deeper soil layers, where thicker root apices and higher soil water depletion rates per unit root length were recorded. As a consequence, root absorbing surface area was as large in unwatered plants as in well-watered plants.  相似文献   

2.
Stomatal response to leaf water status was experimentally manipulated by pressurizing the soil and roots of potted common bean plants enclosed in a custom‐built root pressure chamber. Gas exchange was monitored using a whole‐plant cuvette and plant water status using in situ leaf psychrometry. Bean plants re‐opened their stomata upon pressurization, but the extent of re‐opening was strongly dependent on the time of day when the soil was pressurized, with maximum re‐opening in the morning hours and limited re‐opening in the afternoon. Neither leaf nor xylem abscisic acid concentrations could explain the reduced response to pressurization in the afternoon. The significance of this phenomenon is discussed in the context of circadian rhythms and of other recent findings on the ‘apparent feed‐forward response’ of the stomata of some species to vapour pressure deficit.  相似文献   

3.
Four Glomus species/isolates from arid, semi-arid and mesic areas were evaluated for their effects on growth and water use characteristics of young Citrus volkameriana (′Volkamer′ lemon) under well-watered conditions, followed by three soil-drying episodes of increasing severity (soil moisture tensions of –0.02, –0.06, and –0.08 MPa) and recovery conditions. Arbuscular mycorrhizal (AM) plants were also compared to non-AM plants given extra phosphorus (P) fertilizer. AM plants and non-AM plants had similar shoot size (dry weight and canopy area), but all AM fungus treatments stimulated root growth (dry weight and length). Leaf P concentrations were 12–56% higher in AM plants than non-AM plants. Enhanced root growth was positively correlated with leaf P concentration. In general, AM plants had greater whole-plant transpiration than non-AM plants under well-watered conditions, under mild water stress and during recovery from moderate and severe soil drying. This suggests a faster recovery from moisture stress by AM plants. AM plants had lower leaf conductance than non-AM plants when exposed to severe soil drying. Although the greatest differences were between AM and non-AM plants, plants treated with Glomus isolates differed in colonization level, leaf P concentration, root length, transpiration flux and leaf conductance.  相似文献   

4.
Recent investigations have demonstrated that the growth retardant, (2-chloroethyl) trimethyl-ammonium chloride (CCC) inhibits several aspects of vegetative growth. In solution culture experiments, reduction in plant growth and dry matter production was confirmed in cowpeas, Vigna unguiculata L, (cv. Makueni II), when treated with CCC. The growth retardant had negligible effect on the rate of transpiration per unit leaf area although it slightly increased the relative water content of leaves. Stomatal opening was suppressed by CCC treatment but the number of stomata per unit leaf area was increased by the growth retardant. Variations in mineral element content (K, Ca, N and Na) of shoots are presented and discussed in relation to CCC treatment.  相似文献   

5.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:18,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

6.
The effect of (2RS, 3RS)-1-(4-Chlorophenyl)-4, 4-dimethyl-2-(1H-1,2,4 triazol-1-yl) pentan-3-ol (PP333) on the growth and transpiration of normal and root pruned colt rootstocks was measured. PP333 reduced plant height, stem diameter increment, leaf number, area and weight and stem weight. Root pruning reduced root, leaf and stem weight, and plant height in control plants. PP333 reduced both total water use and transpiration per unit leaf area and increased stomatal resistance. In control plants root pruning also reduced total water use and increased stomatal resistance. 15 days after the beginning of the experiment half the plants in all treatments were allowed to dry out. The effects of drought, i.e. reduced transpiration, growth and leaf water potentials, were smaller in PP333 treated than in control plants.  相似文献   

7.
Summary Stomatal conductance of unstrossed, soil drought, and previously drought (predrought) Gmelina arborea seedlings increased in the morning and decreased before or immediately after midday. In the unstressed and predrought seedlings, leaf water potential decreased with increases in transpiration. In soil drought seedlings, there was some evidence of decreased hydraulic conductivity from soil to the plant, as indicated by the shape in the slope of the water potential/transpiration relationship. Root growth of drought plants was greater than in their unstressed counterparts at the lowest soil segment of a pot. The partial recovery of predrought seedlings was attributed to this subtantial root growth in the lowest soil segment.In the second experiment, Gmelina arborea seedlings were partially waterlogged, by flooding the polyethylene bag to half its length, for a period of 23 days. Waterlogging induced stomatal closure and reduction in leaf water potential but there was some evidence of tolerance to waterlogging towards the end of treatment. Root growth, shoot and root dry weights were slightly reduced below those of controls. After 9 days of waterlogging, adventitious roots began to form which correlated with depletion of soluble sugars in the shoot but with an increase in the roots.It is suggested that the tolerance of Gmelina plants to either soil drought or waterlogging may partly be due to partitioning of the soluble sugars from shoot to roots for production of roots and formation of adventitious roots respectively which are likely to enhance the flow of water from the soils to the plant. Therefore the plant response is very similar under conditions of increased deficits and surplus of soil water.  相似文献   

8.
A pot experiment was conducted to study the effects of root pruning at the stem elongation stage on the growth and water use efficiency (WUE) of winter wheat (Triticum aestivum). The results showed that stomatal conductance (g) and transpiration (E) of wheat were very sensitive to root pruning. After root pruning, they declined rapidly and but returned to pre-pruning values 15 days after treatment. Under well-watered conditions, there was no significant difference in leaf water potential (ψleaf) between root pruned and control plants after root pruning. Under moderate drought stress, ψleaf of root pruned plants declined significantly compared to the control 3 days after root pruning. After 15 days, ψleaf of root pruned plants was similar to the controls. Under different soil moisture levels, net assimilation rate (A) of root pruned plants was lower than controls 3–7 days after root pruning, but was similar to the controls 15 days after pruning. At anthesis (50 days after root pruning), root pruned plants showed significantly higher A compared with the control. Leaf area per tiller and tiller number of root pruning plants was significant lower than the control at booting stage, which showed that root pruning restrained the growth of plants in the early growing stage, but leaf area per stem, of root pruned plants, was similar to the control at anthesis. Under both soil moisture levels, there was no significant difference in grain yield between root pruned and the control plants in the monoculture. In mixture with the control plants, the root pruned plants was less productive and had a lower relative yield (0.92 and 0.78, respectively) compared with the control (1.13 and 1.19, respectively), which suggested that the pruned plants lost some of its competing ability and showed a lower ability to acquire and use the same resources in the mixture compared with the control plant. Over the whole growing cycle, root pruning reduced water consumption (by 10% under well-watered conditions and 16% under moderate drought stress) of wheat significantly compared to the control (< 0.05), and but there was no significant difference in grain yield between root pruned and control plants. Therefore root pruned wheat had a higher WUE with respect to grain yield compared with the controls. In conclusion, lowering water consumption by root pruning in the early growing stage is an effective way to improve water use efficiency in arid and semi arid areas.  相似文献   

9.
The purpose of this study was to characterize leaf photosynthetic and stomatal responses of wheat (Triticum aestivum L.) plants grown under two N-nutritional regimes. High- and low-N regimes were imposed on growth-chamber-grown plants by fertilizing with nutrient solutions containing 12 or 1 millimolar nitrogen, respectively. Gas-exchange measurements indicated not only greater photosynthetic capacity of high-N plants under well-watered conditions, but also a greater sensitivity of CO2 exchange rate and leaf conductance to CO2 and leaf water potential compared to low-N plants. Increased sensitivity of high-N plants was associated with greater tissue elasticity, lower values of leaf osmotic pressure and greater aboveground biomass. These N-nutritional-related changes resulted in greater desiccation (lowered relative water content) of high-N plants as leaf water potential fell, and were implicated as being important in causing greater sensitivity of high-N leaf gas exchange to reductions in water potential. Water use efficiency of leaves, calculated as CO2 exchange rate/transpiration, increased from 9.1 to 13 millimoles per mole and 7.9 to 9.1 millimoles per mole for high- and low-N plants as water became limiting. Stomatal oscillations were commonly observed in the low-N treatment at low leaf water potentials and ambient CO2 concentrations, but disappeared as CO2 was lowered and stomata opened.  相似文献   

10.
Acclimation to Drought in Acer pseudoplatanus L. (Sycamore) Seedlings   总被引:9,自引:0,他引:9  
A glasshouse experiment was conducted with well-watered andwater-stressed seedlings of sycamore (Acer pseudoplatanus L.)grown in soil columns. Water was withheld when the seedlingswere 82-d-old. Effects of soil drying on stomatal behaviour,water relations, xylem cavitation, and growth of leaves androots were evaluated. Stomatal conductance declined well before any observable changein bulk leaf water potentials, and was correlated with soilwater status. At seven weeks, osmotic potential had declinedby 0·51 MPa and 0·44 MPa at full and zero turgor,respectively. Drought significantly increased both bulk elasticmodulus and leaf dry weight to turgid weight ratio of water-stressedplants. Drought had no effect on relative water content at zeroturgor. Water cavitation in the xylem was detected as ultrasonic acousticemissions (AE). Water-stressed plants displayed significantlyhigher rates of AE than well-watered plants. Maximum rate ofAE coincided with the minimum level of stomatal conductanceand apparent rehydration of the leaves. Drought caused changes in the root distribution profile andit increased the root weight. The increase in root weight wasmainly due to a substantial shift in assimilates allocated infavour of roots with total biomass being unaffected. Leaf growthwas maintained for six weeks without any significant declinein expansion rate. However, the development of severe waterstress reduced both leaf production and expansion.  相似文献   

11.
Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.  相似文献   

12.
Munns R  King RW 《Plant physiology》1988,88(3):703-708
Xylem sap was collected from the transpiration stream of wheat (Triticum aestivum L.) plants and assayed for the presence of an inhibitor of transpiration using leaves detached from well-watered plants. Transpiration of detached leaves was reduced by nearly 60% by sap collected from plants in drying soil, and to a lesser extent (about 25%) by sap from plants in well-watered soil. As the soil dried the abscisic acid (ABA) concentration in the sap increased by about 50 times to 5 × 10−8 molar. However, the ABA in the sap did not cause its inhibitory activity. Synthetic ABA of one hundred times this concentration was needed to reduce transpiration rates of detached leaves to the same extent. Furthermore, inhibitory activity of the sap was retained after its passage through an immunoaffinity column to remove ABA. Xylem sap was also collected by applying pressure to the roots of plants whose leaf water status was kept high as the soil dried. Sap collected from these plants reduced transpiration to a lesser extent than sap from nonpressurised plants. This suggests that the inhibitory activity was triggered partly by leaf water deficit and partly by root water deficit.  相似文献   

13.
Mao  Z.  Wang  Yu.  Ma  X.  Jiang  H.  Zu  Yu.  Voronin  P. Yu. 《Russian Journal of Plant Physiology》2004,51(4):508-512
A greenhouse experiment, which imitated a short (4-day-long) and progressive (3-week-long) soil drought, was employed to assess, with an IR gas analyzer, leaf CO2 exchange rate (CER) in intact one-year-old seedlings of Betula platyphylla as related to the flux of photosynthetically active radiation ranging from 0 to 1400 E/(m2 s). The registered indices comprised leaf temperature, leaf transpiration conductivity, and the average daily increment of the leaf area. Within a week period following the transition from the short severe soil drought (20% H2O per soil weight) to the conditions of sufficient water content (35–40%), the plants completely regained the initial leaf CER. Under the progressive soil drought, leaf CER was reduced by 30–35%, as compared to the conditions of sufficient water content, evidently due to a 3.7-fold drop in the transpiration conductivity as compared to the control plants. The apparent constant of Rubisco carboxylation and leaf respiration in the light were not affected by the drought period. The rate of leaf growth under the progressive drought was reduced by 64% as compared to the sufficient moisture conditions. Thus, under the progressive drought, the diminished stomatal conductivity reduced CO2 concentration inside the leaf and lowered carbon photosynthetic assimilation. Meanwhile, the leaf source activity considerably increased in spite of diminished photosynthesis.  相似文献   

14.
C. Kaya  D. Higgs  H. Kirnak  I. Tas 《Plant and Soil》2003,253(2):287-292
The effect of arbuscular mycorrhizal (AM) colonisation by Glomus clarum on fruit yield and water use efficiency (WUE) was evaluated in watermelon (Citrullus lanatus) cv. Crimson Sweet F1 under field conditions. Treatments were: (1) well-watered plants without mycorrhizae (WW-M), (2) well-watered plants with mycorrhizae (WW+M), (3) water- stressed plants without mycorrhizae (WS-M) and (4) water-stressed plants with mycorrhizae (WS+M). When soil water tension readings reached –20 and –50 kPa for well-watered (WW) and water-stressed (WS) treatments, respectively, irrigation was initiated to restore the top soil to near field capacity. Water stress reduced watermelon shoot and root dry matter, fruit yield, water use efficiency but not total soluble solids (TSS) in the fruit, compared with the non-stressed treatments. Mycorrhizal plants had significantly higher biomass and fruit yield compared to nonmycorrhizal plants, whether plants were water stressed or not. AM colonisation increased WUE in both WW and WS plants. Macro- (N, P, K, Ca and Mg) and micro- (Zn, Fe and Mn) nutrient concentrations in the leaves were significantly reduced by water stress. Mycorrhizal colonisation of WS plants restored leaf nutrient concentrations to levels in WW plants in most cases. This is the first report of the mitigation of the adverse effect of water stress on yield and quality of a fruit crop.  相似文献   

15.
The effect of phosphorus and potassium deficiencies on transpiration in tea (Camellia sinensis L. Clone DT 1) was studied. The plants were grown in sand culture, and measurements were made after the plants showed phosphorus or potassium deficiency symptoms. The overall growth of plants was reduced by potassium deficiency but not by phosphorus deficiency. Both deficiencies reduced stomatal aperture and increased leaf water potential. Stomatal density decreased in phosphorus deficient leaves and it increased in potassium deficient leaves. The transpiration of whole plants was reduced by both deficiencies. The relative sensitivity of transpiration to water stress was increased by potassium deficiency but not by phosphorus deficiency.  相似文献   

16.
 Vesicular-arbuscular mycorrhizal (VAM) colonization can alter transpiration of host leaves, but scientists remain unclear about the mechanisms involved. We tested whether intact root systems were required to observe effects of root colonization by Glomus intraradices on leaf transpiration, or whether some VAM influence resided in leaves even after they were detached from root systems. We measured the transpiration of detached leaves of VAM and nonmycorrhizal plants exposed to different levels of several substances known to influence stomata locally or act in whole-plant regulation of transpiration: abscisic acid, calcium, phosphorus, and hydrogen ions. In rose, some VAM influence on transpiration resided in leaves, even after they had been separated from their root systems. However, removing leaves from their root systems eliminated the VAM influence on stomatal behavior of cowpeas. Accepted: 22 June 1998  相似文献   

17.
Soybean plants, receiving nitrate-N or dependent on nitrogenfixation, were subjected to progressive water deprivation undercontrolled environmental conditions in a growth room. Comparativestudies were carried out with respect to well-watered, controlplants. Stressed, nitrate-fed plants had relatively greaterroot development, higher transpiration rates per unit leaf area,lower threshold values of leaf water potential for stomatalclosure and osmotic adjustment in upper leaves. Therefore, theseplants were adopting mechanisms to achieve stress tolerance.In contrast, stressed, nitrogen-fixing plants adopted mechanismsorientated to avoid stress: lower transpiration rates, stomatalclosure at higher leaf water potentials, and delayed onset ofosmotic adjustment. Root development in these plants stoppedunder more severe stress. Nitrogen-fixing plants were more conservativein terms of water use than nitrate-fed plants. Key words: Soybeans, water stress, nitrogen fixation, nitrate  相似文献   

18.
Cultivated crisphead lettuce (Lactuca sativa L.) has a shallower root system than its wild relative, Lactuca serriola L. The effects of localized soil water, at depth, on plant water relations, gas exchange and root distribution were examined in the two species using soil columns with the soil hydraulic-ally separated into two layers, at (0–20 cm and 20–81) cm, but permitting root growth between the layers. Three treatments were imposed on 7-week-old plants, and maintained for 4 weeks: (i) watering, both layers to field capacity; (ii) drying the upper layer while watering the lower layer to field capacity, and (iii) drying both layers. Drying only 0–20 cm of soil had no effect on leaf water status, net photosynthesis, stomatal conductance or biomass production in L. serriola compared to a well-watered control, but caused a short-term reduction (10 d) in leaf water status and photosynthesis in L. sativa that reduced final shoot production. The different responses may be explained by differences in root distribution. Just before the treatments commenced, L. serriola had 50% of total root length at 20–80 cm compared to 35% in L. sativa. Allocation of total biomass to roots in L. serriola was approximately double that in L. sativa. The wild species could provide germplasm for cultivated lettuces to extract more soil water from depth, which may improve irrigation efficiency.  相似文献   

19.
Stomatal behavior and water relations of waterlogged tomato plants   总被引:10,自引:5,他引:5       下载免费PDF全文
The effects of waterlogging the soil on leaf water potential, leaf epidermal conductance, transpiration, root conductance to water flow, and petiole epinasty have been examined in the tomato (Lycopersicon esculentum Mill.). Stomatal conductance and transpiration are reduced by 30% to 40% after approximately 24 hours of soil flooding. This is not due to a transient water deficit, as leaf water potential is unchanged, even though root conductance is decreased by the stress. The stomatal response apparently prevents any reduction in leaf water potential. Experiments with varied time of flooding, root excision, and stem girdling provide indirect evidence for an influence of roots in maintaining stomatal opening potential. This root-effect cannot be entirely accounted for by alterations in source-sink relationships. Although 1-aminocyclopropane-1-carboxylic acid, the immediate precursor of ethylene, is transported from the roots to the shoots of waterlogged tomato plants, it has no direct effect on stomatal conductance. Ethylene-induced petiole epinasty develops coincident with partial stomatal closure in waterlogged plants. Leaf epinasty may have beneficial effects on plant water balance by reducing light interception.  相似文献   

20.
An experiment was conducted to determine soil and plant resistance to water flow in faba bean under field conditions during the growing season. During each sampling period transpiration flux and leaf water potential measured hourly were used with daily measurements of root and soil water potential to calculate total resistance using Ohm's law analogy. Plant growth, root density and soil water content distributions with depth were measured. Leaf area and root length per plant reached their maximum value during flowering and pod setting (0.31 m2 and 2200 m, respectively), then decreasing until the end of the growing period. Root distribution decreased with depth ranging, on average, between 34.2% (in the 0–0.25 m soil layer) and 18.1% (in the 0.75–1.0 m soil layer). Mean root diameter was 0.6 mm but most of the roots were less than 0.7 mm in diameter. Changes in plant and soil water potentials reflected plant growth characteristics and climatic patterns. The overall relationship between the difference in water potential between soil and leaf and transpiration was linear, with the slope equal to average plant resistance (0.0165 MPa/(cm3 m-1 h-1 10-3). Different regression parameters were obtained for the various measurement days. The water potential difference was inversely related to transpiration at high leaf stomatal resistance and at high values of VPD. Total resistance decreased with transpiration flux in a linear relationship (r=−0.68). Different slope values were obtained for the different measurement days. Estimated soil resistance was much lower than the observed total resistance to water flow. The change from vegetative growth to pod filling was accompanied by an increase in plant resistance. The experimental results support previous findings that resistance to water flow through plants is not constant but is influenced by plant age, growth stage and environmental conditions. A more complex model than Ohm's law analogy may be necessary for describing the dynamic flow system under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号