首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of Trypanosoma cruzi slender and broad forms found in the circulation of the mammalian host has remained obscure and, unlike what has been proposed for African trypanosomes, no precise form-function relationship has been ascribed to them. We show here that parasites circulating in the blood of infected animals display a high degree of polymorphism. Around 10% of the forms found circulating in mice during the acute phase of infection were amastigotes, and the other 90% included slender and broad trypomastigotes and intermediate forms between amastigotes and trypomastigotes. Slender trypomastigotes, from blood or cell culture, undergo extracellularly morphological rearrangements in which the parasites become gradually broader and transform into amastigotes. By scanning electron microscopy a progressive internalization of the flagellum and reorganization of the cell shape in a helical fashion were observed in parasites undergoing transformation. After 48 hr of extracellular incubation the parasite population consisted exclusively of amastigotes with a short protruding flagellum. The morphological changes were associated with the expression of different surface antigens defined by monoclonal antibodies: the trypomastigote-specific antigens Ssp-1 (a 100-120-150-Mr glycoprotein), Ssp-2 (a 70-Mr glycoprotein), Ssp-3 (undefined), and Ssp-4, an amastigote-specific surface antigen. Ssp-4 was also detected on intracellular amastigotes (in vitro and in vivo). We conclude that trypomastigotes are programmed to develop into amastigotes whether or not they enter cells, and that the differentiation can occur in the blood of the vertebrate host. These findings raise some questions regarding conventional views on the life cycle of T. cruzi.  相似文献   

2.
ABSTRACT. In this study we have examined the distribution of epitopes defined by monoclonal antibodies raised against Trypanosoma cruzi amastigotes during the intraceullar life cycle of the parasite. We have raised monoclonal antibodies towards amastigote forms and performed preliminary immunochemical characterization of their reactivities. MAB 1D9, 3G8, 2B7, 3B9, and 4B9, and 4B9 react with carbohydrate epitopes of the parasite major surface glycoprotein—Ssp-4 defined by MAB 2C2 [5]: MAB 4B5 reacts with a noncarbohydrate epitope in all developmental stages of the parasite, and MAB 3B2 also detects a noncarbohydrate epitope preferentially in T. cruzi flagellared forms. Vero cells infected with tissue culture-derived trypomastigotes of clone D11 (G strain) were fixed at different times during the intraceullular proliferation of parasites, and processed for immjno-electron microscopy and confocal immunoflurescence with the different monoclonal antibodies. We observed that while the surface distribution of MAB 2C2 and 4B9 epitopes was uniform throughout the cycle, MAB 1D9, 3G8, and 2B7 reacted with cytoplasmic membrance-bound compartments of the amastigotes. MAB 3B9 displayed a unique surface dentate pattern in some amastigotes. MAB 4B5 recognized a curved-shaped structure at the flagellar pocket region in some intracellular amastigotes and localized to the membrane in dividing forms. In intracellular trypomastigotes, MAB 4B5 also displayed a punctate pattern near the flagellar pocket.  相似文献   

3.
One predominant 55-kDa polypeptide was phosphorylated in vitro in Trypanosoma cruzi homogenates prepared from three differentiation stages: epimastigotes, trypomastigotes, and spheromastigotes. Anti-alpha and anti-beta tubulin monoclonal antibodies immunoprecipitated the phosphorylated 55-kDa polypeptide from epimastigote extracts. Phosphoserine was the only residue phosphorylated in vitro in the 55-kDa polypeptide and in immunoprecipitated alpha tubulin. The phosphorylation of both the 55-kDa polypeptide and exogenously added casein was inhibited with GTP, heparin, and 2,3-bisphosphoglycerate in a dose-dependent manner, indicating the involvement of a CK2-like protein kinase. Moreover, when tubulin was isolated from an epimastigote homogenate by ultracentrifugation, followed by DEAE-Sephacel chromatography, a protein kinase that phosphorylated tubulin and casein co-purified with this cytoskeletal component. This result suggests an association between tubulin and its corresponding protein kinase in T. cruzi.  相似文献   

4.
Microtubule cytoskeleton is a dynamic structure involved in the maintenance of eukaryote cell shape, motion of cilia and flagellum, and intracellular movement of vesicles and organelles. Many antibodies against tubulins have been described, most of them against the C-terminal portion, which is exposed at the outside of the microtubules. By generating a novel set of monoclonal antibodies against the cytoskeleton of Trypanosoma cruzi, a flagellate protozoan that causes Chagas' disease, we selected a clone (mAb 3G4) that recognizes β-tubulin. The epitope for mAb 3G4 was mapped by pepscan to a highly conserved sequence motif found between α-helices 11 and 12 of the C-terminus of β-tubulin in eukaryotes. It labels vesicular structures in both T. cruzi and mammalian cells, colocalizing respectively with a major cysteine protease (Cruzipain) and lysosome associated protein (LAMP2) respectively, but it does not label regular microtubules on these cellular models. We propose that the epitope recognized by mAb 3G4 is exposed only in a form of tubulin associated with endosomes.  相似文献   

5.
Bloodstream trypomastigotes of some Trypanosoma cruzi strains were processed through DEAE-cellulose columns under standardized conditions. The results obtained suggest mainly that these strains present different surface charges, that there are subpopulations of bloodstream trypomastigotes as regards electrical charges and that the broad forms are less negative than the slender ones.  相似文献   

6.
A set of monoclonal antibodies against the purified surface gp 83 of T. cruzi trypomastigotes was produced and the ability of these monoclonals to inhibit the attachment of trypomastigotes to heart myoblasts was investigated. Western blots of solubilized trypomastigotes, epimastigotes or amastigotes probed with this set of monoclonal antibodies show that the gp 83 is present in invasive trypomastigotes, but not in non-invasive epimastigotes or amastigotes. One monoclonal antibody (Mab 4A4) from this set inhibits the attachment of trypomastigotes to heart myoblasts, whereas the others (MAbs 2H6, 4B9, 2D11) do not. These results show that the Mab 4A4 recognizes an epitope on the gp 83 of invasive trypomastigotes required for parasite binding to host cells.  相似文献   

7.
In the mitotic sea urchin egg, the spindle microtubules were composed of different tubulin isotypes from those of astral microtubules using monoclonal antibodies [Oka et al. (1990) Cell Motil. Cytoskeleton, 16, 239-250]. Three of the antibodies, D2D6, DM1B, and YL1/2, were specific for spindle microtubules, astral microtubules and reactive with both microtubules, respectively. The mitotic sea urchin egg was treated with microtubule depolymerizing (colcemid and nocodazole) and stabilizing (hexylene glycol) drugs and change in the heterogeneous distribution of the tubulin isotypes was investigated by the immunofluorescence procedure using these three monoclonal anti-tubulin antibodies. We observed that: (1) the microtubule depolymerizing drugs caused quick depolymerization of most mitotic microtubules, and a small number of spindle microtubules remaining were stained with all three antibodies; (2) hexylene glycol induced many microtubules in the mitotic apparatus, which was stained with D2D6 but was not stained with DM1B; (3) hexylene glycol also induced a great number of miniasters in the cytoplasm, and they were stained with three antibodies. These results suggest that these drugs altered the distribution of tubulin isotypes in the mitotic microtubules during depolymerization or polymerization within a short time.  相似文献   

8.
Trypomastigote forms from the Y strain of Trypanosoma cruzi were inactivated by treatment with 8-methoxypsoralen and ultraviolet radiation (365 nm). The parasite population maintained normal morphology, mobility, and mammalian cell invasion capacity, being incapable of intracellular differentiation and reproduction. A strong protection of inbred A/Snell mice against challenges with virulent T. cruzi forms was obtained through three inoculations of the inactivated trypomastigotes. All immunized mice survived, with negative parasitemias and absence of tissue lesions. Several antibody-mediated reactions were performed with sera from the protected mice at distinct stages of the experiment. The levels of agglutinating, lytic (complement-mediated), and protein A binding antibodies increased progressively with each immunizing booster. The trypomastigote surface proteins recognized by antibodies present in these sera were identified after immunoprecipitation and two-dimensional polyacrylamide gel electrophoresis.  相似文献   

9.
A set of monoclonal antibodies that recognizes a Trypanosoma cruzi 45-kDa protein was produced and used to characterize this molecule and study its role in trypanosome adhesion to heart myoblasts. We found that the 45-kDa protein is a surface mucin, is expressed only in invasive trypomastigotes, but not in noninvasive epimastigotes or amastigotes, and is released by the trypanosome in culture medium. One of the monoclonal antibodies (Mab B5) from this set inhibits the attachment of trypomastigotes to heart myoblasts preventing trypanosome entry, whereas the others (Mabs B4 and F1) do not. This inhibition was seen with the B5 hybridoma culture supernatant, with the purified Mab B5 IgG or with Mab B5 Fab fragments. These novel findings identify the 45-kDa mucin as a new T. cruzi ligand that is used by invasive forms of this organism to adhere to heart myoblasts.  相似文献   

10.
A mouse monoclonal anti-alpha-tubulin antibody was used to investigate the disposition of the cytoskeletal microtubules of three tissue culture cell lines--J774 macrophages, BSC-1, and Vero cells--infected with the Brazil strain of Trypanosoma cruzi. Indirect immunofluorescence light microscopy was used to demonstrate the antigenic response in host cells and parasites, simultaneously. In all morphotypes of T. cruzi, the monoclonal antibody reacted with all subpopulations of microtubules, inclusively, the subpellicular, flagellar, cytopharyngeal, and mitotic. The host cell cytoskeletal microtubule framework was revealed and the redistribution and destruction of the microtubular lattice in response to parasite infection over a 120 h period recorded. Our results show that after the initial inoculation of tissue cultures with trypomastigotes, the parasites penetrate the cells and locate in the perinuclear region of the cell where they multiply. The number and distribution of host cell microtubules were altered during the infection. The normal radial distribution of microtubules extending from the center of the cell to the periphery was destroyed. The remaining microtubules were observed at the periphery encircling, but well removed from the proliferating parasites. The complete transformation of the parasites was monitored throughout the infection with the end result being the liberation of parasites and the near complete destruction of the microtubular framework of the host cell. A residual population of dividing spheromastigotes was observed in cells liberating trypomastigotes. Colloidal gold labeling of thin sections as seen in the electron microscope affirmed the specificity of our monoclonal antibody to all subpopulations of microtubules in T. cruzi.  相似文献   

11.
Monoclonal antibodies specific for mammalian beta-tubulin recognized the microtubule cytoskeleton of the flagellated protozoon Trichomonas vaginalis. Of seven antibodies, two demonstrated the axostyle, costa, recurrent flagellum, and anterior flagella by indirect immunofluorescence microscopy. The remaining five stained a hazy reticular pattern in the cytoplasm of formaldehydefixed, detergent-extracted organisms. Western immunoblots of whole T. vaginalis extracts treated with protease inhibitors and electrophoresed on polyacrylamide gels containing sodium dodecyl sulfate showed a major band at molecular weight 50,000 when probed with only one of the antibodies which stained the axial cytoskeleton. The antibodies which stained only the cytoplasm showed a different western blot pattern with a major doublet band at MW 58,000-60,000. Another antibody, which stained both the axial cytoskeleton and the reticular cytoplasmic pattern showed major bands at MW 58,000-60,000 and also at MW 40,000-42,000. The recognition of microtubule populations in T. vaginalis by these monoclonal antibodies was different than we found earlier with Leishmania donovani and Toxoplasma gondii, where all seven antibodies recognize cytoskeletal microtubules and produce western blots characteristic of tubulin. Only one of these seven antibodies recognizes tubulin in T. vaginalis by immunoblot. The microtubules of T. vaginalis do not demonstrate all epitopes recognized by monoclonal antibodies specific for mammalian beta-tubulin; one of the antibodies appears to recognize an epitope which is morphologically associated with microtubules but does not have the characteristic MW of tubulin.  相似文献   

12.
American Trypanosomiasis is caused by the hemoflagellate Trypanosoma cruzi (T. cruzi) and affects millions of persons causing variable degrees of digestive and heart disturbances. As far as we concerned, T. cruzi capacity to synthesize steroid hormones has not been investigated. Therefore, the aim of this work was to investigate the capacity of T. cruzi trypomastigotes to transform tritiated steroid precursors into androgens and estrogens. The T. cruzi Tulahuén strain was obtained from mice blood. The trypomastigotes were cultured for 6 and 24h in Dulbbeco's modified Eagle's medium plus FCS and antibiotics. Tritiated dehydroepiandrosterone or androstendione were added to the culture media and parasites were incubated for 6 or 24h. The cultures were centrifuged and ether extracted. The steroids were analyzed by thin layer chromatography (TLC) in two solvent systems. After incubation with (3)H-androstenedione, T. cruzi trypomastigotes synthesized (3)H-testosterone (T), (3)H-17beta-estradiol (E(2)) and (3)H-estrone (E(1)). Metabolism of (3)H-DHEA by the parasites yielded (3)H-androstendione and (3)H-androstendiol at 6h of incubation. The recrystallization procedure further demonstrated the (3)H-androstendiol and (3)H-17beta-estradiol syntheses. Results indicate for the first time that T. cruzi trypomastigotes produce androgens and estrogens when incubated in the presence of steroid precursors and suggest the presence of active parasite steroidogenic enzymes.  相似文献   

13.
Attempts to recreate all the developmental stages of Trypanosoma cruzi in vitro have thus far been met with partial success. It is possible, for instance, to produce trypomastigotes in tissue culture and to obtain metacyclic trypomastigotes in axenic conditions. Even though T. cruzi amastigotes are known to differentiate from trypomastigotes and metacyclic trypomastigotes, it has only been possible to generate amastigotes in vitro from the tissue-culture-derived trypomastigotes. The factors and culture conditions required to trigger the transformation of metacyclic trypomastigotes into amastigotes are as yet undetermined. We show here that pre-incubation of metacyclic trypomastigotes in culture (MEMTAU) medium at 37 degrees C for 48 h is sufficient to commit the parasites to the transformation process. After 72 h of incubation in fresh MEMTAU medium, 90% of the metacyclic parasites differentiate into forms that are morphologically indistinguishable from normal amastigotes. SDS-PAGE, Western blot and PAABS analyses indicate that the transformation of axenic metacyclic trypomastigotes to amastigotes is associated with protein, glycoprotein and antigenic modifications. These data suggest that (a) T. cruzi amastigotes can be obtained axenically in large amounts from metacyclic trypomastigotes, and (b) the amastigotes thus obtained are morphological, biological and antigenically similar to intracellular amastigotes. Consequently, this experimental system may facilitate a direct, in vitro assessment of the mechanisms that enable T. cruzi metacyclic trypomastigotes to transform into amastigotes in the cells of mammalian hosts.  相似文献   

14.
15.
Tubulin expression in trypanosomes   总被引:2,自引:0,他引:2  
Microtubules in trypanosomes are the main component of the flagellar axoneme and of the subpellicular microtubule corset, whose relative positions determine the morphology of each cell stage of the life cycle of these parasites. Microtubules are polymers of tubulin, a protein dimer of two 55-kDa subunits, alpha- and beta-tubulin; in Trypanosoma brucei, the tubulin-coding sequences are clustered in a 40-kb fragment of tandemly repeated alpha- and beta-tubulin genes separated by a 170-bp intergenic zone. This cluster is transcribed in a unique RNA which is rapidly processed into mature mRNAs carrying the 5' 35-nucleotide leader sequence found in all trypanosome mRNAs. Although no heterogeneity has been found at the gene level, tubulin can be post-translationally modified in 2 ways: the C-terminal tyrosine of alpha-tubulin can be selectively cleaved and added again with 2 enzymes, tubulin carboxypeptidase and tubulin-tyrosine ligase; alpha-tubulin can also be acetylated on a lysine residue. Some molecular domains of tubulin are restricted to subpopulations of microtubules; for instance, the beta-tubulin form defined by the monoclonal antibody 1B41 is sequestered into a part of the subpellicular cytoskeleton limited to the flagellar adhesion zone, which might correspond to the group of 4 microtubules associated with a cisterna of the endoplasmic reticulum, forming the so-called "subpellicular microtubule quartet" (SFMQ). The early assembly of this zone in each daughter cell during the cell division of T. brucei, together with the alterations undergone by the domain defined by the monoclonal antitubulin 24E3 during the differentiation of Trypanosoma cruzi, suggest that specific tubulin forms are responsible for dynamic properties of SFMQ possibly involved in trypanosome morphogenesis.  相似文献   

16.
Two hybridoma cell lines were selected after the fusion of the myeloma cell line X-63 Ag8-653 with spleen cells from mice immunized with bovine brain microtubules. These lines, clones 3F3 and 16D3, secrete IgM antibodies both staining a fibrillar network in fibroblasts. Autoradiography of immunoblots of SDS gels showed that the antigenic determinants defined by these antibodies are present on tubulin and also on several other polypeptides in mammalian cells. In contrast, they were found to react only with tubulin in Trypanosoma brucei, parasitic protozoan which are the causative agent of sleeping sickness. By immunofluorescence microscopy, 3F3 bound only to a subpopulation of microtubules associated with the flagellum of these cells when, under the same conditions, 16D3 stained other microtubule populations including sub-pellicular microtubules. These results show that flagellar tubulin differs from tubulin of other locations in the same cell by at least one antigenic determinant which could be involved in microtubule specialization.  相似文献   

17.
Two monoclonal antibodies (16 D3 and 24 E3) were used to map tubulin domains in human spermatozoa by indirect immunofluorescence. Their specificity to tubulin in these cells was established by Western blotting. Whereas 16 D3 uniformly stained the principal piece of the flagellum, the staining provided by 24 E3 decreased along the tail to become very weak 30 micron further away from the midpiece. This latter antibody also reacted with the proximal centriole as well as the midpiece, but not all spermatozoa stained identically at this level indicating heterogeneity within the population of sperm cells from a given donor. 16 D3 reacted weakly with the head, and the staining was interrupted after a bright spot in the neck. The study of a pathological case (the short tail spermatozoon) with an abnormal arrangement of dense fibers was consistent with a correlation between the distribution of the epitope defined by 24 E3 and that of peri-axenomal structures. The existence of tubulin domains interacting with these structures is postulated.  相似文献   

18.
Almeida-de-Faria, M., Freymüller, E., Colli, W., and Alves, M. J. M. 1999. Trypanosoma cruzi: Characterization of an intracellular epimastigote-like form. Experimental Parasitology 92, 263-274. A detailed study of transient epimastigote-like forms as intermediates in the differentiation of Trypanosoma cruzi amastigotes to trypomastigotes inside the host cell cytoplasm was undertaken using the CL-14 clone grown in cells maintained at 33 degrees C. Several parameters related to these forms have been compared with epimastigotes and other stages of the parasite. Consequently, the designation of intracellular epimastigotes is proposed for these forms. Despite being five times shorter (5.4 +/- 0.7 micrometer) than the extracellular epimastigote (25.2 +/- 2.1 micrometer), the overall morphology of the intracellular epimastigote is very similar to a bona fide epimastigote, when cell shape, position, and general aspect of organelles are compared by transmission electron microscopy. Epimastigotes from both sources are lysed by human complement and bind to DEAE-cellulose, in contrast to amastigotes and trypomastigote forms. A monoclonal antibody (3C5) reacts with both epimastigotes either isolated from axenic media or intracellular and very faintly with amastigotes, but not with trypomastigotes. Some differences of a quantitative nature are apparent between the two epimastigote forms when reactivities with lectins or stage-specific antibodies are compared, revealing the transient nature of the intracellular epimastigote. The epitope recognized by 3C5 monoclonal antibody reacts slightly more intensely with extracellular than with intracellular epimastigotes, as detected by immunoelectron microscopy. Also a very faint reaction of the intracellular epimastigotes was observed with monoclonal antibody 2C2, an antibody which recognizes a glycoprotein specific for the amastigote stage. Biological parameters as growth curves in axenic media and inhability to invade nonphagocytic tissue-cultured cells are similar in the epimastigotes from both origins. It is proposed that the epimastigote-like forms are an obligatory transitional stage in the transformation of amastigotes to trypomastigotes with a variable time of permanency in the host cell cytoplasm depending on environmental conditions.  相似文献   

19.
The ethanolic phosphotungstic acid (PTA) technic was used to detect, at the fine-structural level, basic proteins in various developmental stages of pathogenic Trypanosoma cruzi, and nonpathogenic Herpetomonas samuelpessoai, Leptomonas samueli, and Crithidia deanei, trypanosomatids. Reactions were observed in the nucleus of all stages. In the kinetoplast of epimastigote and promastigote forms reactions were noted mainly at the periphery. In trypomastigotes and choanomastigotes forms, however, an intense reacion was observed thorughout the kinetoplast. Reactions were present in cytoplasmic vesicles related to protein storage in T. cruzi and in membrane-bounded peroxisome-like organelles of H. samuelpessoai, L. samueli and C. deanei. The network of filaments which forms the paraxial rod did not react. In the flagellum, reaction was noted only at the peripheral doublet microtubules. PTA reacts also with structures related to the junction between the flagellar and cell body membranes.  相似文献   

20.
ABSTRACT. Monoclonal antibodies specific for mammalian β-tubulin recognized the microtubule cytoskeleton of the flagellated protozoon Trichomonas vaginalis. Of seven antibodies, two demonstrated the axostyle, costa, recurrent flagellum, and anterior flagella by indirect immunofluorescence microscopy. The remaining five stained a hazy reticular pattern in the cytoplasm of formaldehyde-fixed, detergent-extracted organisms. Western immunoblots of whole T. vaginalis extracts treated with protease inhibitors and electrophoresed on polyacrylamide gels containing sodium dodecyl sulfate showed a major band at molecular weight 50,000 when probed with only one of the antibodies which stained the axial cytoskeleton. The antibodies which stained only the cytoplasm showed a different western blot pattern with a major doublet band at MW 58,000–60,000. Another antibody, which stained both the axial cytoskeleton and the reticular cytoplasmic pattern showed major bands at MW 58,000–60,000 and also at MW 40,000–42,000. The recognition of microtubule populations in T. vaginalis by these monoclonal antibodies was different than we found earlier with Leishmania donovani and Toxoplasma gondii, where all seven antibodies recognize cytoskeletal microtubules and produce western blots characteristic of tubulin. Only one of these seven antibodies recognizes tubulin in T. vaginalis by immunoblot. The microtubules of T. vaginalis do not demonstrate all epitopes recognized by monoclonal antibodies specific for mammalian β-tubulin; one of the antibodies appears to recognize an epitope which is morphologically associated with microtubules but does not have the characteristic MW of tubulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号