共查询到20条相似文献,搜索用时 15 毫秒
1.
Winding DNA in a superhelix can be considered a process consisting of two smooth deformations: bending and twisting. The extra twist angle introduced by winding DNA into the nucleosomal superhelix is calculated by means of the Crick formula to be -0.5 degrees per base pair (bp). This is equivalent to a change of -0.15 +/- 0.015 bp in the DNA double-helical repeat. Free DNA in solution is known to have a helical repeat of 10.55 +/- 0.1 bp. On the other hand, a weighted average of various estimates of the DNA repeat in the nucleosome is 10.38 +/- 0.02. The difference happens to be perfectly accounted for by the superhelicity of the nucleosomal DNA. This implies that the latter is essentially nonconstrained . 相似文献
2.
Yeast has proven to be a powerful system for investigation of chromatin structure. However, the extent to which yeast chromatin can serve as a model for mammalian chromatin is limited by the significant number of differences that have been reported. To further investigate the structural relationship between the two chromatins, we have performed a DNA topological analysis of pRSSVO, a 5889 base-pair plasmid that can replicate in either yeast or mammalian cells. When grown in mammalian cells, pRSSVO contains an average of 33 negative supercoils, consistent with one nucleosome per 181 bp. This is close to the measured nucleosome repeat length of 190 bp. However, when grown in yeast cells, pRSSVO contains an average of only 23 negative supercoils, which is indicative of only one nucleosome per 256 bp. This is dramatically different from the measured nucleosome repeat length of 165 bp. To account for these observations, we suggest that yeast chromatin is composed of relatively short ordered arrays of nucleosomes with a repeat of 165 bp, separated by substantial gaps, possibly corresponding to regulatory regions. 相似文献
3.
Analysis of the structure of chromatin in cereal species using micrococcal nuclease (MNase) cleavage showed nucleosomal organization and a ladder with typical nucleosomal spacing of 175–185 bp. Probing with a set of DNA probes localized in the authentic telomeres, subtelomeric regions and bulk chromatin revealed that these chromosomal regions have nucleosomal organization but differ in size of nucleosomes and rate of cleavage between both species and regions. Chromatin from Secale and Dasypyrum cleaved more quickly than that from wheat and barley, perhaps because of their higher content of repetitive sequences with hairpin structures accessible to MNase cleavage. In all species, the telomeric chromatin showed more rapid cleavage kinetics and a shorter nucleosome length (160 bp spacing) than bulk chromatin. Rye telomeric repeat arrays were shortest, ranging from 8 kb to 50 kb while those of wheat ranged from 15 kb up to 175 kb. A gradient of sensitivity to MNase was detected along rye chromosomes. The rye-specific subtelomeric sequences pSc200 and pSc250 have nucleosomes of two lengths, those of the telomeric and of bulk nucleosomes, indicating that the telomeric structure may extended into the chromosomes. More proximal sequences common to rye and wheat, the short tandem-repeat pSc119.2 and rDNA sequence pTa71, showed longer nucleosomal sizes characteristic of bulk chromatin in both species. A strictly defined spacing arrangement (phasing) of nucleosomes was demonstrated along arrays of tandem repeats with different monomer lengths (118, 350 and 550 bp) by combining MNase and restriction enzyme digestion. 相似文献
4.
Akihisa Osakabe Fumiya Adachi Yasuhiro Arimura Kazumitsu Maehara Yasuyuki Ohkawa Hitoshi Kurumizaka 《Open biology》2015,5(10)
DNA methylation occurs on CpG sites and is important to form pericentric heterochromatin domains. The satellite 2 sequence, containing seven CpG sites, is located in the pericentric region of human chromosome 1 and is highly methylated in normal cells. In contrast, the satellite 2 region is reportedly hypomethylated in cancer cells, suggesting that the methylation status may affect the chromatin structure around the pericentric regions in tumours. In this study, we mapped the nucleosome positioning on the satellite 2 sequence in vitro and found that DNA methylation modestly affects the distribution of the nucleosome positioning. The micrococcal nuclease assay revealed that the DNA end flexibility of the nucleosomes changes, depending on the DNA methylation status. However, the structures and thermal stabilities of the nucleosomes are unaffected by DNA methylation. These findings provide new information to understand how DNA methylation functions in regulating pericentric heterochromatin formation and maintenance in normal and malignant cells. 相似文献
5.
6.
Ian R. Brown 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1982,698(3):307-309
The organization of chromatin in neurons of the cerebral cortex of the guinea pig brain was analyzed by digesting isolated nuclei with micrococcal nuclease. During development, cortical neurons were observed to undergo an alteration in chromatin structure which results in an atypically short nucleosomal DNA repeat length of 164 bp. This change in chromatin organization occurs postnatally in certain mammals but in the guinea pig it takes place prior to birth between days 32 and 44 of fetal development. This suggests that the appearance of the short nucleosomal DNA repeat length in cortical neurons correlates to a particular stage of differentiation of cortical neurons rather than to the event of birth. 相似文献
7.
Kenneth A. Marx Ray Kruger Michael J. Clarke 《Molecular and cellular biochemistry》1989,86(2):155-162
The goal of this study is to establish the nature of pentammineruthenium(III) binding to DNA in intact mouse liver nuclei. Also, we wish to determine whether the nucleosomal organization of mouse chromatin has a substantial effect on the relative Ru(III) binding levels of internucleosomal and nucleosomal core DNA. These questions are important because ammineruthenium compounds share chemical and biological properties with the cis-dichlorodiammineplatinum(II) or cisplatin chemotherapeutic agent. Therefore, they represent a potential class of new chemotherapeutic agents. We find that in intact nuclei the predominant DNA binding site for pentammineruthenium(II), followed by air oxidation to pentammineruthenium(III), is N-7 guanine, as is the case with cisplatin. Also, the Ru(III) distribution between internucleosomal and nucleosomal core DNA was found to be nearly identical as probed with three non-specific deoxyribonucleases. 相似文献
8.
The dinucleosome is an informative unit for analysis of the higher-order chromatin structure. DNA fragments forming stable dinucleosomes were screened from a dinucleosome DNA library after the reconstitution of nucleosomes in vitro and digestion with micrococcal nuclease. Reconstituted dinucleosomes showed a diversity of sensitivity to micrococcal nuclease, suggesting that the biochemical stability of a dinucleosome depends, in part, on the DNA fragments. The DNA fragments after the screening were classified into three groups represented by clones bf10, af14 and af32 according to the sensitivity to micrococcal nuclease. Mapping of the nucleosome boundaries by Southern blotting of the DNA after restriction digestion and by primer extension analysis showed that each nucleosome position of clone af32 was fixed. Analysis of reconstituted dinucleosomes using mutant DNA fragments of clone af32 revealed a unique property characteristic of a key nucleosome, given that the replacement of a DNA fragment corresponding to the right nucleosome position resulted in marked sensitivity to micrococcal nuclease, whereas the replacement of the other nucleosome fragment had almost no effect on sensitivity as compared to the original af32 construct. The mutant construct in which the right nucleosome was removed showed multiple nucleosome phases, suggesting that the right nucleosome stabilized first each mononucleosome and then the dinucleosome. An oligonucleotide bending assay revealed that the DNA fragment in the right nucleosome included curved DNA, suggesting that the positioning activity of the nucleosome was attributed to its DNA structure. These results suggest that information for forming stable dinucleosome is embedded in the genomic DNA and that a further characterization of the key nucleosome is useful for understanding the building up of the chromatin structure. 相似文献
9.
10.
Kato M Onishi Y Wada-Kiyama Y Abe T Ikemura T Kogan S Bolshoy A Trifonov EN Kiyama R 《Journal of molecular biology》2003,332(1):111-125
Dinucleosome formation is the first step in the organization of the higher order chromatin structure. With the ultimate aim of elucidating the dinucleosome structure, we constructed a library of human dinucleosome DNA. The library consists of PCR-amplifiable DNA fragments obtained by treatment of nuclei of erythroid K562 cells with micrococcal nuclease followed by extraction of DNA and adaptor ligation to the blunt-ended DNA fragments. The library was then cloned using a plasmid vector and the sequences of the clones were determined. The dominating clones containing the Alu elements were removed. A total of 1002 clones, which comprised a dinucleosome database, contained 84 and 918 clones from the clones before and after removing Alu elements, respectively. Approximately 70% of the clones were between 300 and 400 bp in size and they were distributed to various locations of all chromosomes except the Y chromosome. The clones containing A(2)N(8)A(2)N(8)A(2) or T(2)N(8)T(2)N(8)T(2) sequences were classified into three types, Type I (N shape), Type II (V shape) and Type III (M shape) according to DNA curvature plots. The locations of experimentally determined curved DNA segments matched well with the calculated ones though the clones of Types I and III showed additional curved DNA segments as revealed by the curvature plots. The distributions of complementary dinucleotides in the nucleosome DNA, at the ends of the dinucleosome DNA clones, allowed us to predict the positions of the nucleosome dyad axis, and estimate the size of the nucleosome core DNA, 125nt. The distributions of AA and TT dinucleotides, as well as other RR and YY dinucleotides, showed a periodicity with an average period of 10.4 bases, close to the values observed before. Mapping of nucleosome positions in the dinucleosome database based on the observed periodicity revealed that the nucleosomes were separated by a linker of 7.5+ approximately 10 x n nt. This indicates that the nucleosome-nucleosome orientations are, typically, halfway between parallel and antiparallel. Also an important finding is that the distributions of AA/TT and other RR/YY dinucleotides, apparently, reflect both DNA curvature and DNA bendability, cooperatively contributing to the nucleosome formation. 相似文献
11.
Summary Several spontaneous Lac− deletion derivatives of the β-galactosidase gene ofLactobacillus bulgaricus were analyzed for their phenotypic stability. We found that one of these mutants,lac139, carrying a deletion of 30 by within the gene, was able to revert to a Lac+ phenotype. Genetical analysis of revertants indicated that an internal region of 72 by was duplicated immediately next to
the deletion site. The region involved in the duplication event is flanked by direct repeated sequences of 13 by in length.
Both events, the deletion and the duplication, were mediated by the presence of such short direct repeats. Enzymatic studies
of the purified proteins indicated identical kinetic parameters, but showed considerable instability of the revertant protein. 相似文献
12.
13.
A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning 总被引:4,自引:0,他引:4
Tolstorukov MY Colasanti AV McCandlish DM Olson WK Zhurkin VB 《Journal of molecular biology》2007,371(3):725-738
How eukaryotic genomes encode the folding of DNA into nucleosomes and how this intrinsic organization of chromatin guides biological function are questions of wide interest. The physical basis of nucleosome positioning lies in the sequence-dependent propensity of DNA to adopt the tightly bent configuration imposed by the binding of the histone proteins. Traditionally, only DNA bending and twisting deformations are considered, while the effects of the lateral displacements of adjacent base pairs are neglected. We demonstrate, however, that these displacements have a much more important structural role than ever imagined. Specifically, the lateral Slide deformations observed at sites of local anisotropic bending of DNA define its superhelical trajectory in chromatin. Furthermore, the computed cost of deforming DNA on the nucleosome is sequence-specific: in optimally positioned sequences the most easily deformed base-pair steps (CA:TG and TA) occur at sites of large positive Slide and negative Roll (where the DNA bends into the minor groove). These conclusions rest upon a treatment of DNA that goes beyond the conventional ribbon model, incorporating all essential degrees of freedom of "real" duplexes in the estimation of DNA deformation energies. Indeed, only after lateral Slide displacements are considered are we able to account for the sequence-specific folding of DNA found in nucleosome structures. The close correspondence between the predicted and observed nucleosome locations demonstrates the potential advantage of our "structural" approach in the computer mapping of nucleosome positioning. 相似文献
14.
Hao Yang 《FEBS letters》2009,583(9):1548-4944
1-Methyladenine (m1A) alters T·A Watson-Crick to T·m1A Hoogsteen base pair. Owing to its conversion to N6-methyladenine (m6A) at higher temperatures, thermodynamic studies of m1A-containing DNAs using conventional melting methods are subject to the influence of m6A species. In this study, we applied nuclear magnetic resonance spectroscopy to determine the base pairing modes and effect of m1A on thermodynamic stability of double-helical DNA. The observed base pairing modes account for the destabilizing trend which follows the order T·m1A ∼ G·m1A < A·m1A < C·m1A, providing insights into the m1A flipping process and enhancing our understandings of the mutagenicity of m1A. 相似文献
15.
In our previous work we have shown by comparison of experimental and computational data that the positions of the histone
octamers bound to the DNA molecule appear to be completely sequence-dependent. This provides a convenient and quick method
for locating the nucleosomes along the DNA molecule, as soon as the nucleotide sequence is known. Using this computational
approach, the complete nucleosomal map of the SV40 minichromosome has been constructed. The map consists of 25 nucleosomes,
with their coordinates (centers) being specified with high accuracy. The map is found to be in remarkable agreement with available
experimental data. 相似文献
16.
Nucleosome-like structures have been efficiently assembled in vitro by interaction of cauliflower histones, pBR322 DNA and cauliflower DNA topoisomerase, as assayed by supercoiling of relaxed circular DNA and by digestion with micrococcal nuclease. The optimum ionic strength for supercoiling was 150 mM KCl and the optimum weight ratio of histone to DNA was approximately 1.0. Four histones, H2A, H2B, H3 and H4, were necessary for the optimum assembling conditions, and the nucleosomes assembled protected DNA fragments of approximately 150 bp in length. It was found that cauliflower DNA topoisomerase acts not only as a DNA-relaxing enzyme but also as a chaperon factor for nucleosome assembly. 相似文献
17.
Benjamin Audit Cédric Vaillant Alain Arnéodo Yves d'Aubenton-Carafa Claude Thermes 《Journal of biological physics》2004,30(1):33-81
Analyses of genomic DNA sequences have shown in previous works that base pairs are correlated at large distances with scale-invariant statistical properties. We show in the present study that these correlations between nucleotides (letters) result in fact from long-range correlations (LRC) between sequence-dependent DNA structural elements (words) involved in the packaging of DNA in chromatin. Using the wavelet transform technique, we perform a comparative analysis of the DNA text and of the corresponding bending profiles generated with curvature tables based on nucleosome positioning data. This exploration through the optics of the so-called `wavelet transform microscope' reveals a characteristic scale of 100-200 bp that separates two regimes of different LRC. We focus here on the existence of LRC in the small-scale regime ( 200 bp). Analysis of genomes in the three kingdoms reveals that this regime is specifically associated to the presence of nucleosomes. Indeed, small scale LRC are observed in eukaryotic genomes and to a less extent in archaeal genomes, in contrast with their absence in eubacterial genomes. Similarly, this regime is observed in eukaryotic but not in bacterial viral DNA genomes. There is one exception for genomes of Poxviruses, the only animal DNA viruses that do not replicate in the cell nucleus and do not present small scale LRC. Furthermore, no small scale LRC are detected in the genomes of all examined RNA viruses, with one exception in the case of retroviruses. Altogether, these results strongly suggest that small-scale LRC are a signature of the nucleosomal structure. Finally, we discuss possible interpretations of these small-scale LRC in terms of the mechanisms that govern the positioning, the stability and the dynamics of the nucleosomes along the DNA chain. This paper is maily devoted to a pedagogical presentation of the theoretical concepts and physical methods which are well suited to perform a statistical analysis of genomic sequences. We review the results obtained with the so-called wavelet-based multifractal analysis when investigating the DNA sequences of various organisms in the three kingdoms. Some of these results have been announced in B. Audit et al. [1, 2]. 相似文献
18.
19.
山杨杂种无性系的SSR分子标记遗传多样性 总被引:1,自引:1,他引:1
采用5对SSR引物对52个山杨杂种无性系进行了遗传多样性检测,结果表明在研究的5个位点上SSR标记多态位点百分率为100%,平均等位基因数为4.4个,有效等位基因数最多的位点是PTR7,最少的位点为PTR12;欧美山杨杂种的遗传多样性最丰富,相比之下,中美山杨杂种遗传变异最低;聚类分析表明,在一定的遗传距离基础上,欧美山杨杂种和欧洲山杨首先聚为一类,然后又与中美山杨杂种聚类,最后是中国山杨。研究表明来自芬欧美山杨杂种具有较高的遗传多样性,这对我国山杨遗传资源的扩大,以及未来山杨杂交育种,杂种优势的利用都是重要的。 相似文献
20.
Heterochromatic regions of chromosomes contain highly repetitive, tandemly arranged DNA sequences that undergo very rapid variation compared to unique DNA sequences that are predominantly conserved. In this study the chromosomal basis of speciation has been looked at in terms of repeat sequences. We have hybridized twenty-one chromosome-specific human alphoid satellite DNA probes to metaphase spreads of the chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and orangutan (Pongo pygmaeus) to investigate the evolutionary relationship of heterochromatic regions among such hominoid species. The majority of the probes did not hybridize to their corresponding equivalent chromosome but presented hybridization signals on non-corresponding chromosomes. Such observations suggest that rapid changes may have occurred in the ancestral alphoid satellite DNA sequence, resulting in divergence among the great ape species. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献