首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH4: O2 gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.  相似文献   

2.
Results are presented from experimental studies of the destruction of chlorofluorocarbon (CF2Cl2) molecules in a methane-oxygen (air) gas mixture whose combustion is initiated by a high-current slipping surface discharge. It is found that a three-component CH4+O2(air)+CF2Cl2 gas mixture (even with a considerable amount of the third component) demonstrates properties of explosive combustion involving chain reactions that are typical of two-component CH4+O2 mixtures. Experiments show the high degree of destruction (almost complete decomposition) of chlorofluorocarbons contained in the mixture during one combustion event. The combustion dynamics is studied. It is shown that the combustion initiated by a slipping surface discharge has a number of characteristic features that make it impossible to identify the combustion dynamics with the formation of a combustion or detonation wave. The features of the effects observed can be related to intense UV radiation produced by a pulsed high-current surface discharge.  相似文献   

3.
A self-consistent model describing the influence of a pulsed discharge on H2-air mixtures is developed. The model includes the processes of ionization, dissociation, and excitation of the gas molecules by electron impacts; a set of ion-molecular reactions determining the time evolution of the charged particle densities; the processes involving electronically excited atoms and molecules; and a set of reactions describing the ignition of hydrogen-oxygen mixtures. Results are presented from simulations of the oxidation dynamics of hydrogen molecules in a stoichiometric H2-air mixture and the ignition of such a mixture under the action of a pulsed high-current discharge. The simulation results are compared with available experimental data and calculations performed by other authors.  相似文献   

4.
A rapid heating of nitrogen-oxygen mixtures excited by gas discharges is investigated numerically with allowance for the following main processes: the reactions of predissociation of highly excited electronic states of oxygen molecules (which are populated via electron impact or via the quenching of the excited states of N2 molecules), the reactions of quenching of the excited atoms O(1 D) by nitrogen molecules, the VT relaxation reactions, etc. The calculated results adequately describe available experimental data on the dynamics of air heating in gas-discharge plasmas. It is shown that, over a broad range of values of the reduced electric field E/N, gas heating is maintained by a fixed fraction of the discharge power that is expended on the excitation of the electronic degrees of freedom of molecules (for discharges in air, ηE?28%). The lower the oxygen content of the mixture, the smaller the quantity ηE. The question of a rapid heating of nitrogen with a small admixture of oxygen is discussed.  相似文献   

5.
Synthesis of titanium diboride and boron nitride nano- and microcrystals by means of a pulsed microwave discharge in a mixture of Ti-B powders in a nitrogen atmosphere is considered. For this purpose, a new type of reactor with a free surface of the powder mixture was used. The reactor design permits free expansion of the reaction products into the reactor volume and their deposition on the reactor walls. Conditions for the synthesis of TiB2 and BN compounds were studied as functions of the energy input in the discharge, the powder component ratio, the rate of the nitrogen flow through the reactor, and the structure and phase composition of the compounds deposited on the reactor walls. The synthesis of boron nitride and titanium diboride in crystal structures is proven. An important role in the process of synthesis is played by the heating of the mixture due to the titanium diboride synthesis reaction, its behavior in the bulk of the reactor, and the titanium concentration in the powder mixture. It is also found that, as the number of discharges in the bulk of the reactor increases, a dust cloud forms. The luminescence of this cloud indicates that the initiated discharge proceeds not only on the powder surface and in the powder bulk, but also in the reactor volume.  相似文献   

6.
Microwave gas discharges excited near a dielectric surface are investigated. Such discharges can exist over a broad range of gas pressures and thereby can be used to solve a wide variety of applied problems. The wave dispersion properties favorable for discharge excitation are analyzed, and a kinetic discharge model is considered that can be used to calculate the discharge parameters. A model of a steady discharge at gas pressures of 102–104 Pa is constructed.  相似文献   

7.
An accurate and precise knowledge of the amount of energy introduced into prebiotic discharge experiments is important to understand the relative roles of different energy sources in the synthesis of organic compounds in the primitive Earth's atmosphere and other planetary atmospheres. Two methods widely used to determine the power of spark discharges were evaluated, namely calorimetric and oscilloscopic, using a chemically inert gas. The power dissipated by the spark in argon at 500 Torr was determined to be 2.4 (+12%/_17%) J s_1 by calorimetry and 5.3 (± 15%) J s_1 by the oscilloscope. The difference between the two methods was attributed to (1) an incomplete conversion of the electric energy into heat, and (2) heat loss from the spark channel to the connecting cables through the electrodes. The latter contribution leads to an unwanted effect in the spark channel by lowering the spark product yields as the spark channel cools by mixing with surrounding air and by losing heat to the electrodes. Once the concentrations of the spark products have frozen at the freeze-out temperature, any additional loss of heat from the spark channel to the electrodes has no consequence in product yields. Therefore, neither methods accurately determines the net energy transferred to the system. With a lack of a quantitative knowledge of the amount of heat loss from the spark channel during the interval from ignition of the spark to when the freeze-out temperature is reached, it is recommended to derive the energy yields of the spark products from the mean value of the two methods with the uncertainty being their standard deviation. For the case of argon at 500 Torr, this would be 3.8 (±50%) J s_1.  相似文献   

8.
Two-dimensional numerical simulations of a dc discharge in a CH4/H2/N2 mixture in the regime of deposition of nanostructured carbon films are carried out with account of the cathode electron beam effects. The distributions of the gas temperature and species number densities are calculated, and the main plasmachemical kinetic processes governing the distribution of methyl radicals above the substrate are analyzed. It is shown that the number density of methyl radicals above the substrate is several orders of magnitude higher than the number densities of other hydrocarbon radicals, which indicates that the former play a dominant role in the growth of nanostructured carbon films. The model is verified by comparing the measured optical emission profiles of the H(n ≡ 3), C 2 * , CH*, and CN* species and the calculated number densities of excited species, as well as the measured and calculated values of the discharge voltage and heat fluxes onto the electrodes and reactor walls. The key role of ion–electron recombination and dissociative excitation of H2, C2H2, CH4, and HCN molecules in the generation of emitting species (first of all, in the cold regions adjacent to the electrodes) is revealed.  相似文献   

9.
Results are presented from experimental and theoretical studies of the sterilization of medical products by the plasmas of dc glow discharges in different gas media. The sterilization efficiency is obtained as a function of discharge parameters. The plasma composition in discharges in N2 and O2 is investigated under the operating conditions of a plasma sterilizer. It is shown that free surfaces of medical products are sterilized primarily by UV radiation from the discharge plasma, while an important role in sterilization of products with complicated shapes is played by such chemically active particles as oxygen atoms and electronically excited O2 molecules.  相似文献   

10.
The molecular basis for the chemical evolution of low molecular compounds was studied using electric discharges on a higly oxidized atmosphere comprised of CO2, N2 and H2O. In the gas phase, O2 and CO were formed by the decomposition of CO2 and their yields were enhanced by the addition of N2 to the gas mixture. It was demonstrated that H2O suppressed the reduction of CO2 while H2O also had a role in producing organic compounds such as formic acid and formaldehyde. Infrared analysis of the water soluble products and the inner surface of the reaction vessel indicated the production of compounds more complex than formic acid and formaldehyde. These compounds contained the chemical bonds which were identified to be OH, CO, CN and/or CC.  相似文献   

11.
The interaction of a noble gas jet (Xe, Kr, He) with a laser plasma at a distance of ~1 cm from a solid target (Mg, (CH2)n, LiF, or CF4) was studied for the first time. The line spectra that were excited in the course of charge exchange of multicharged ions with noble gas atoms in the interaction region were recorded. A clean (debris-free) soft X-ray source excited by laser pulses focused into a xenon jet was designed and investigated.  相似文献   

12.
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) was used to quantify the phosphopeptide produced by calcium/calmodulin-dependent protein kinase II (CaMK II). MALDI-TOF measurements were performed in a linear and positive ion mode with delayed extraction excited at various laser powers and at different sampling positions, i.e., different loci of laser illumination. We find that the ratio of the peak area of the substrate (S) to that of its monophosphorylated form (SP) for a given mixture is constant, independent of the laser powers and/or of the sample loci illuminated by the laser. We also find that the fraction of phosphorylation determined by MALDI-TOF, orfMALDI-TOF, is proportionally smaller than that determined by HPLC, orfHPLC; the ratiofMALDI-TOF/fHPLCwas 0.797 ± 0.0229 (99% confidence limit,n= 7) for a 30-mer peptide substrate used in this study. A low mass gate, which turns off the detector temporarily, improved the ratiofMALDI-TOF/fHPLCto 0.917 ± 0.0184 (99% confidence limit,n= 7). Our interpretation of this result is that the reduction of the phosphopeptide peak in the MALDI-TOF measurement is likely to be caused by a temporal loss of detector function rather than by a lower efficiency of ionization for the phosphopeptide compared with its parent species. In these measurements the experimental errors, up to the 50% phosphorylation state, were less than 5%. After an adjustment made based on thefMALDI-TOF/fHPLCratio of 0.917, MALDI-TOF gave an accurate measurement for the kinetics of the CaMK II phosphorylation reaction. Since only a small volume of the reaction mixture, typically containing 3 to 50 pmol of substrate, is required for the MALDI-TOF measurement, this method can be adapted to a nonradioactive microscale assay for CaMK II and also for other protein kinases.  相似文献   

13.
Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic‐ and thermophilic anaerobic cultures were enriched to convert CO2 to CH4 by addition of H2. Enrichment at thermophilic temperature (55°C) resulted in CO2 and H2 bioconversion rate of 320 mL CH4/(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic‐ and thermophilic‐enriched cultures, as revealed by PCR–DGGE. Nonetheless, they all belonged to the order Methanobacteriales, which can mediate hydrogenotrophic methanogenesis. Biogas upgrading was then tested in a thermophilic anaerobic reactor under various operation conditions. By continuous addition of hydrogen in the biogas reactor, high degree of biogas upgrading was achieved. The produced biogas had a CH4 content, around 95% at steady‐state, at gas (mixture of biogas and hydrogen) injection rate of 6 L/(L day). The increase of gas injection rate to 12 L/(L day) resulted in the decrease of CH4 content to around 90%. Further study showed that by decreasing the gas–liquid mass transfer by increasing the stirring speed of the mixture the CH4 content was increased to around 95%. Finally, the CH4 content around 90% was achieved in this study with the gas injection rate as high as 24 L/(L day). Biotechnol. Bioeng. 2012; 109: 2729–2736. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Spectral and energy characteristics of nitrogen molecule radiation in dielectric barrier discharges in Ar-N2, Ar-N2-Cl2, and Ar-N2-Br2 mixtures were investigated experimentally. Small additives of molecular chlorine or bromine to an Ar-N2 mixture are found to increase the radiation intensity of the second positive system of nitrogen. The conditions at which the radiation spectrum predominantly consists of vibronic bands of this system are determined. Using a numerical model of plasmachemical processes, it is shown that, at electron temperatures typical of gas discharges (2–4 eV), a minor additive of molecular chlorine to an Ar-N2 mixture leads to an increase in the concentrations of electrons, positive ions, and metastable argon atoms. In turn, collisional energy transfer from metastable argon atoms to nitrogen molecules results in the excitation of the N2(C 3Π u ) state.  相似文献   

15.
16.
The kinetic processes occurring in an electric-discharge oxygen-iodine laser are analyzed with the help of a 2D (r, z) gasdynamic model taking into account transport of excited oxygen, singlet oxygen, and radicals from the electric discharge and their mixing with the iodine-containing gas. The main processes affecting the dynamics of the gas temperature and gain are revealed. The simulation results obtained using the 2D model agree well with the experimental data on the mixture gain. A subsonic oxygen-iodine laser in which singlet oxygen is generated by a 350 W transverse RF discharge excited in an oxygen flow at a pressure P = 10 Torr and the discharge tube wall is covered with mercury oxide is simulated. The simulated mixing system is optimized in terms of the flow rate and the degree of preliminary dissociation of the iodine flow. The optimal regime of continuous operation of a subsonic electric-discharge oxygen-iodine laser is found.  相似文献   

17.
Results from experimental studies of multipactor discharges on the surfaces of various dielectrics placed in a high-Q cylindrical microwave cavity excited at the TE013 mode in the X-band are presented. The thresholds for the onset and maintenance of a multipactor discharge on quartz, polycrystalline diamond, lithium fluoride, and Teflon surfaces possessing different roughness are determined. It is shown that, in such a resonance system, a steady multipactor discharge can operate without transition into the stage of microwave breakdown of the desorbed gas. It is found that, due to long-term action of the discharge, a thin carbon-containing film is deposited on the dielectric surface, which leads to an increase in the breakdown threshold.  相似文献   

18.
The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl2 mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl2 percentage in the Xe/Cl2 gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.  相似文献   

19.
A micro-Z-pinch has been recognized as a possible spark for the ignition of a dense D-T plasma [1–3]. The use of such a spark to ignite advanced fuels has been explored only superficially [4, 5]. In this paper, we address the problem of the transition between an ignited D-T plasma and a section of an advanced fuel such as D or D + He3. Some general rules are derived for the parameters of a conical channel of D-T that amplifies the spark energy to a level suitable for the ignition of a detonation wave in an inertially confined cylinder of highly compressed advanced fuel plasma.  相似文献   

20.
Results are presented from the study of the electrical and optical characteristics of a transverse RF discharge in Xe/Cl2 mixtures at pressures of p≤400 Pa. The working mixture was excited by a modulated RF discharge (f=1.76 MHz) with a transverse electrode configuration (L≤17 cm). The emission spectrum in the spectral range of 210–600 nm and the waveforms of the discharge current, discharge voltage, and plasma emission intensity were investigated. The UV emission power from the discharge was studied as a function of the pressure and composition of a Xe/Cl2 mixture. It is shown that a discharge in a xenon-chlorine mixture acts as planar excimer-halogen lamp operating in the spectral range of 220–450 nm, which contains a system of overlapping XeCl(D, B-X; B, C-A) and Cl2(D′-A′) bands. Transverse RF discharges in Xe/Cl2 mixtures can be used to create a wideband lamp with two 50-cm2 planar apertures and the low circulation rate of the working mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号