首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants of Alcaligenes eutrophus were isolated on the basis of their inability to grow on succinate as the sole source of carbon and energy. The mutants also failed to grow on other gluconeogenic substrates, including pyruvate, acetate, and citrate. Simultaneously, they had lost their capability for autotrophic growth. The mutants grew, but slower than the wild type, on fructose or gluconate. Growth retardation on gluconate was more pronounced. The mutants lacked phosphoglycerate mutase activity, and spontaneous revertants of normal growth phenotype had regained the activity. The physiological characteristics of the mutants indicate the role of phosphoglycerate mutase in heterotrophic and autotrophic carbon metabolism of A. eutrophus. Although the enzyme is necessary for gluconeogenesis during heterotrophic growth on three- or four-carbon substrates, its glycolytic function is not essential for the catabolism of fructose or gluconate via the Entner-Doudoroff pathway. The enzyme is required during autotrophic growth as a catalyst in the biosynthetic route leading from glycerate 3-phosphate to pyruvate. It is suggested that the mutants accomplish the complete degradation of fructose and gluconate mutase lesion. The catabolically produced triose phosphates are converted to fructose 6-phosphate which is rechanneled into the Entner-Doudoroff pathway. This carbon recycling mechanism operates less effectively in mutant cells growing on gluconate.  相似文献   

2.
3.
Alcaligenes eutrophus did not form the key enzymes of autotrophic metabolism, the soluble and particulate hydrogenases and ribulosebisphosphate carboxylase (RuBPC), during heterotrophic growth on succinate in batch cultures. During succinate-limited growth in a chemostat, high activities of both hydrogenases were observed. With decreasing dilution rate (D) the steady-state hydrogenase activity (H) followed first-order kinetics, expressed as follows: H = Hmax .e-alpha.D. An identical correlation was observed when autotrophic growth in a chemostat was limited by molecular hydrogen. During autotrophic growth under oxygen or carbon dioxide limitation, the activity if the soluble hydrogenase was low. These data suggested that hydrogenase formation depended on the availability of reducing equivalents to the cells. RuBPC activities were not correlated with the hydrogenase activities. During succinate-limited growth, RuBPC appeared at intermediate activities. During autotrophic growth in a carbon dioxide-limited chemostat, RuBPC was highly derepressed. RuBPC activity was not detected in cells that suffered from energy limitation with a surplus of carbon, as in a heterotrophic oxygen-limited chemostat, nor was it detected in cells limited in carbon and energy, as in the case of complete exhaustion of a heterotrophic substrate. From these data I concluded that RuBPC formation in A. eutrophus depends on two conditions, namely, carbon starvation and an excess of reducing equivalents.  相似文献   

4.
Phosphoenolpyruvate (PEP) carboxykinase was identified to be the only C3-carboxylating enzyme in Alcaligenes eutrophus. The enzyme requires GDP or inosine diphosphate (GTP or inosine triphosphate) for activity. Pyruvate- and other PEP-dependent CO2-fixing enzyme activities were not detected, regardless of whether the cells were grown autotrophically or heterotrophically. It is suggested that two pathways are present in the organism for the formation of PEP from C4 dicarboxylic acids. Besides decarboxylation of oxaloacetate by PEP carboxykinase, the consecutive action of NADP+-malic enzyme and PEP synthetase can also accomplish this synthesis. An oxaloacetate decarboxylase activity observed in the cell extracts may also contribute to the latter route. The properties of a mutant deficient in PEP synthetase supported the biochemical data. This mutant was unable to grow on pyruvate or lactate and grew slower than the wild type on direct or indirect metabolites of the tricarboxylic acid cycle such as succinate, glutamate, or acetate. Growth on fructose and autotrophic growth were not affected by the enzyme defect. The findings suggest that, depending on the growth substrate utilized, PEP carboxykinase can serve a dual physiological function in A. eutrophus, an anaplerotic function in oxaloacetate synthesis from PEP, or a gluconeogenic function in PEP synthesis from oxaloacetate.  相似文献   

5.
Autotrophic cultures of the facultative chemolithotroph Alcaligenes eutrophus have been found to excrete glycollate. This excretion was greatly stimulated by the incorporation of up to 20% (v/v) oxygen in the hydrogen used for gassing. The stimulatory effect of oxygen was prevented by the addition of 10% (v/v) CO2 to the gassing mixture. Glycollate excretion only in the presence of oxygen was increased by the addition of 2-pyridyl-hydroxymethane sulphonic acid (HPMS), an inhibitor of glycollate oxidation, indicating that glycollate formation itself was stimulated by oxygen. No glycollate excretion by cultures grown heterotrophically on pyruvate was detected, either in the absence or presence of HPMS, under heterotrophic or autotrophic cells showed phosphoglycollate phosphatase and glycollate oxidoreductase activities, which were considerably lower in extracts prepared from pyruvate- or fructose-grown (heterotrophic) cells. The increase in activity of both enzymes upon cell transfer from heterotrophic to autotrophic growth was prevented by chloramphenicol and resembled the induction of D-ribulose 1,5-diphosphate carboxylase under the same conditions.  相似文献   

6.
Representative autotrophic and thermophilic archaeal species of different families of Crenarchaeota were examined for key enzymes of the known autotrophic CO(2) fixation pathways. Pyrobaculum islandicum ( Thermoproteaceae) contained key enzymes of the reductive citric acid cycle. This finding is consistent with the operation of this pathway in the related Thermoproteus neutrophilus. Pyrodictium abyssi and Pyrodictium occultum ( Pyrodictiaceae) contained ribulose 1,5-bisphosphate carboxylase, which was active in boiling water. Yet, phosphoribulokinase activity was not detectable. Operation of the Calvin cycle remains to be demonstrated. Ignicoccus islandicus and Ignicoccus pacificus ( Desulfurococcaceae) contained pyruvate oxidoreductase as potential carboxylating enzyme, but apparently lacked key enzymes of known pathways; their mode of autotrophic CO(2) fixation is at issue. Metallosphaera sedula, Acidianus ambivalens and Sulfolobus sp. strain VE6 ( Sulfolobaceae) contained key enzymes of a 3-hydroxypropionate cycle. This finding is in line with the demonstration of acetyl-coenzyme A (CoA) and propionyl-CoA carboxylase activities in the related Acidianus brierleyi and Sulfolobus metallicus. Enzymes of central carbon metabolism in Metallosphaera sedula were studied in more detail. Enzyme activities of the 3-hydroxypropionate cycle were strongly up-regulated during autotrophic growth, supporting their role in CO(2) fixation. However, formation of acetyl-CoA from succinyl-CoA could not be demonstrated, suggesting a modified pathway of acetyl-CoA regeneration. We conclude that Crenarchaeota exhibit a mosaic of three or possibly four autotrophic pathways. The distribution of the pathways so far correlates with the 16S-rRNA-based taxa of the Crenarchaeota.  相似文献   

7.
The soluble, NAD+-reducing hydrogenase in intact cells of Alcaligenes eutrophus was inactivated by oxygen when electron donors such as hydrogen or pyruvate were available. The sole presence of either oxygen or oxidizable substrates did not lead to inactivation of the enzyme. Inactivation occurred similarly under autotrophic growth conditions with hydrogen, oxygen and carbon dioxide. The inactivation followed first order reaction kinetics, and the half-life of the enzyme in cells exposed to a gas atmosphere of hydrogen and oxygen (8:2, v/v) at 30° C was 1.5 h. The process of inactivation did not require ATP-synthesis. There was no experimental evidence that the inactivation is a reversible process catalyzed by a regulatory protein. The possibility is discussed that the inactivation is due to superoxide radical anions (O 2 - ) produced by the hydrogenase itself.  相似文献   

8.
9.
The effects of a number of organic substrates on the autotrophic metabolism of Hydrogenomonas eutropha were examined. Dual substrate (mixotrophic) cultivation in the presence of hydrogen plus either fructose or alanine allowed autotrophic growth to begin immediately after the exhaustion of the organic substrate. On the other hand, the presence of acetate, pyruvate, or glutamate caused a lengthy lag to occur before autotrophic growth commenced. With acetate or pyruvate this lag (plateau) in the dicyclic growth curve was due to the repression of ribulose diphosphate carboxylase (RDPC) synthesis during mixotrophic growth. During heterotrophic growth with glutamate, RDPC was partially repressed; however, during mixotrophic growth, RDPC activity was high. Thus the delay of autotrophic growth was not due to a repression of RDPC by glutamate. The data suggest that glutamate interferes with autotrophic metabolism by repressing the incorporation of inorganic nitrogen. The repression of these vital autotrophic functions by acetate, pyruvate, and glutamate occurred both in the presence and absence of hydrogen, i.e., during both heterotrophic and mixotrophic cultivation. The derepression of the affected systems during the plateau phase of the dicyclic growth curves was demonstrated. Carbon dioxide assimilation by whole cells agreed well with the RDPC activity of extracts from cells grown under similar conditions.  相似文献   

10.
The biosynthesis of the enzyme pyruvate kinase (E.C. 2.7.1.40) of Alcaligenes eutrophus (Hydrogenomonas eutropha) H 16 was influenced by the carbon and energy source. After growth on gluconate the specific enzyme activity was high while acetate grown cells exhibited lower activities (340 and 55 mumoles/min-g protein, respectively). The pyruvate kinase from autotrophically grown cells was purified 110-fold. The enzyme was characterized by homotropic cooperative interactions with the substrate phosphoenolpyruvate, the activators AMP, ribose 5-phosphate, glucose-6-phosphate and the inhibitor ortho-phosphate. In addition to phosphate ATP caused inhibition but in this case nonsigmoidal kinetics was obtained. The half maximal substrate saturation constant S0.5 for phosphoenolpyruvate in the absence of any effectors was 0.12 mM, in the presence of 1 mM ribose-5-phosphate 0.07 mM, and with 9 mM phosphate 0.67 mM. The corresponding Hill values were 0.96, 1.1 and 2.75. The ADP saturation curve was hyperbolic even in the presence of the effectors, the Km value was 0.14 mM ADP. When the known intracellular metabolite concentrations in A. eutrophus H 16 were compared with the regulatory sensitivity of the enzyme, it appeared that under the conditions in vivo the inhibition by ATP was more important than the regulation by the allosteric effectors.  相似文献   

11.
During autotrophic growth, cells of Thiobacillus A 2 retained a considerable capacity to oxidize various organic energy sources. Heterotrophically grown cultures, on the other hand, were completely devoid of the capacity to fix CO2 via the Calvin cycle and to generate energy from thiosulfate. During transitions from organic media to inorganic thiosulfate-containing media in the chemostat, a long lag-phase was observed before energy generation, CO2 fixation and, consequenctly, measurable growth occurred. This lag-phase was practically abolished if substrates were presentm at very low concentrations in the thiosulfate mineral medium which could be used as an energy source. The same result was obtained when the cells contained reserve material at the moment of the transition. During transitions from thiosulfate-limited growth to starvation, the -thiosulfate and the capacity to fix CO2 decreased very slowly, after an initial short (± 4 h) increase of both enzyme systems. In contrast, these two metabolic functions were inactivated relatively rapidly in the presence of an oxidizable organic carbon and energy source. This process of inactivation was instantaneously stopped and reversed into rapid enzyme synthesis upon replacement of the organic substrate by thiosulfate.  相似文献   

12.
Two key autotrophic enzyme systems, hydrogenase and ribulose diphosphate carboxylase, were examined in Mycobacterium gordonae and two other chemolithotrophic, scotochromogenic mycobacteria under different cultural conditions. In all three organisms both enzymes were inducible and were produced in significant levels only in the presence of the specific substrate, hydrogen or carbon dioxide. M. gordonae exhibited increased growth rates and yields, indicating mixotrophic growth, in the presence of a number of single organic substrates, including acetate, pyruvate, glucose, fructose, and glycerol. In contrast to other aerobic hydrogen autotrophs, the presence of either acetate or pyruvate did not repress ribulose diphosphate carboxylase, and mixotrophic growth was rapid with these substrates. In the absence of carbon dioxide, growth in glycerol medium under an atmosphere of hydrogen and oxygen was severely inhibited, even with cells preadapted to heterotrophic growth on glycerol. Cyclic adenosine monophosphate was not effective in inducing hydrogenase or carboxylase in heterotrophic, mixotrophic, or hydrogen-inhibited cultures.  相似文献   

13.
D A Feldman  P Datta 《Biochemistry》1975,14(8):1760-1767
Incubation of Escherichia coli cells with glucose, pyruvate, and certain other metabolites led to rapid inactivation of inducible biodegradative threonine dehydratase. Analysis with several mutant strains showed that pyruvate, and not a metabolite derived from pyruvate, was capable of inactivating enzyme, and that glucose acted indirectly after being converted to pyruvate. Some other alpha-keto acids such as oxaloacetate and alpha-ketobutyrate (but not alpha-ketoglutarate) were also effective. Inactivation of threonine dehydratase by pyruvate was also observed with purified enzyme preparations. The rates of enzyme inactivation increased with increased concentrations of pyruvate and decreased with increased levels of AMP. Increasing protein concentrations lowered the rates of enzyme inactivation. Dithiothreitol had a large effect on the maximum extent of inactivation of the enzyme by pyruvate; high concentrations of AMP and DTT almost completely counteracted the effect of pyruvate. Gel filtration data showed that pyruvate influenced the oligomeric state of the enzyme by altering the association-dissociation equilibrium in favor of dissociation; the Stokes' radius of the pyruvate-inactivated enzyme was 32 A as compared to 42 A for the untreated enzyme. Reassociation of the dissociated form of the enzyme was achieved by removal of excess free pyruvate by dialysis against buffer supplemented with AMP and DTT. Incubation of threonine dehydratase with [14-C]pyruvate revealed apparent covalent attachment of pyruvate to the enzyme. Strong protein denaturants such as guanidine, urea, and sodium dodecyl sulfate failed to release bound radioactive pyruvate; the molar ratio of firmly bound pyruvate was approximately 1 mol/150,000 g of protein. Pretreatment of the enzyme with p-chloromercuribenzoate and 5,5'-dithiobis(2-nitrobenzoate) (Nbs2) did not reduce the binding of [14-C]pyruvate suggesting no active site SH was involved in the pyruvate-enzyme linkage. Titration of active and pyruvate-inactivated enzyme with Nbs2 indicated that the loss in enzyme activity was not due to oxidation of essential sulfhydryl groups on the enzyme. Based on these data we propose that the mechanism of enzyme inactivation by pyruvate involves covalent attachment of pyruvate to the active oligomeric form of the enzyme followed by dissociation of the oligomer to yield inactive enzyme.  相似文献   

14.
Abstract The localization of the soluble NAD-dependent hydrogenase in cells of Alcaligenes eutrophus PHB4 was investigated using the protein A-gold technique as a post-embedding immunoelectron microscopic procedure. The enzyme was found throughout the cytoplasm of the cells. Autotrophic cells harvested in the logarithmic phase of growth exhibited a higher degree of labeling as compared to autotrophic cells from the stationary growth phase. Heterotrophic cells showed an almost identical labeling intensity in all growth phases. In a substrate-shift experiment (from fructose to glycerol, performed in the stationary growth phase), high amounts of newly synthesized enzyme could be observed two hours after the shift. This enzyme was located, as inclusion bodies, in the DNA region of the cells.  相似文献   

15.
1. Isocitrate lyase activity was measured in non-induced Chlorella fusca var. vacuolata cells. 2. During exponential autotrophic growth about 1-2 molecules of the enzyme per cell were present. 3. In light-limited cultures the amount of the enzyme increased to 10-20 molecules/cell. 4. When autotrophic cultures were placed in the dark, the basal activity of isocitrate lyase increased after a 2h lag so that after 8h in the dark there was a 500-fold increase in activity. 5. When isocitrate lyase was induced (by addition of acetate and removal of illumination) in autotrophic cultures which had been growing exponentially, the full induced rate of enzyme synthesis was obtained after 70-80min. 6. When light-limited autotrophic cultures were induced, the rate of isocitrate lyase synthesis was maximal after only 40-50min. 7. These data are consistent with a catabolite-repression control co-ordinated with photosynthetic activity,which may be independent of the specific inducing effect of acetate.  相似文献   

16.
The autotrophic CO(2) fixation pathway (3-hydroxypropionate cycle) in Chloroflexus aurantiacus results in the fixation of two molecules of bicarbonate into one molecule of glyoxylate. Glyoxylate conversion to the CO(2) acceptor molecule acetyl-coenzyme A (CoA) requires condensation with propionyl-CoA (derived from one molecule of acetyl-CoA and one molecule of CO(2)) to beta-methylmalyl-CoA, which is converted to citramalyl-CoA. Extracts of autotrophically grown cells contained both S- and R-citramalyl-CoA lyase activities, which formed acetyl-CoA and pyruvate. Pyruvate is taken out of the cycle and used for cellular carbon biosynthesis. Both the S- and R-citramalyl-CoA lyases were up-regulated severalfold during autotrophic growth. S-Citramalyl-CoA lyase activity was found to be due to l-malyl-CoA lyase/beta-methylmalyl-CoA lyase. This promiscuous enzyme is involved in the CO(2) fixation pathway, forms acetyl-CoA and glyoxylate from l-malyl-CoA, and condenses glyoxylate with propionyl-CoA to beta-methylmalyl-CoA. R-Citramalyl-CoA lyase was further studied. Its putative gene was expressed and the recombinant protein was purified. This new enzyme belongs to the 3-hydroxy-3-methylglutaryl-CoA lyase family and is a homodimer with 34-kDa subunits that was 10-fold stimulated by adding Mg(2) or Mn(2+) ions and dithioerythritol. The up-regulation under autotrophic conditions suggests that the enzyme functions in the ultimate step of the acetyl-CoA regeneration route in C. aurantiacus. Genes similar to those involved in CO(2) fixation in C. aurantiacus, including an R-citramalyl-CoA lyase gene, were found in Roseiflexus sp., suggesting the operation of the 3-hydroxypropionate cycle in this bacterium. Incomplete sets of genes were found in aerobic phototrophic bacteria and in the gamma-proteobacterium Congregibacter litoralis. This may indicate that part of the reactions may be involved in a different metabolic process.  相似文献   

17.
To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotrophically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.3 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation.  相似文献   

18.
Cold lability of pyruvate, orthophosphate dikinase in the maize leaf   总被引:10,自引:5,他引:5       下载免费PDF全文
Cold lability of pyruvate, orthophosphate dikinase was investigated using a homogeneous, purified enzyme preparation from maize (Zea mays L. var. Golden Cross Bantam T51) leaves. Its stability was markedly reduced below about 10 C and the rate of cold inactivation followed first order kinetics at a concentration lower than about 0.1 milligram of enzyme per milliliter. Cold inactivation was little affected by pH in the range which gives good stability for the enzyme at warm temperatures and the enzyme activity was protected strongly by inclusion of substrates (pyruvate and phosphoenolpyruvate) and polyols such as sucrose, sorbitol, and glycerol. Loss of catalytic activity was accompanied by an apparent dissociation of a tetrameric form of the enzyme (9S form) into a new, more slowly sedimenting (5.1S) component. Inclusion of pyruvate at 4 mM in the cold-treated enzyme had no effect on the sedimentation value. A sharp change in activation energy of the dikinase-catalyzed reaction was observed near 12 C and its break point appears to be close to the generally accepted critical low temperature limit for the growth of maize plants.  相似文献   

19.
Pyruvate:ferredoxin oxidoreductase (PFOR) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and CO(2). The catalytic proficiency of this enzyme for the reverse reaction, pyruvate synthase, is poorly understood. Conversion of acetyl-CoA to pyruvate links the Wood-Ljungdahl pathway of autotrophic CO(2) fixation to the reductive tricarboxylic acid cycle, which in these autotrophic anaerobes is the stage for biosynthesis of all cellular macromolecules. The results described here demonstrate that the Clostridium thermoaceticum PFOR is a highly efficient pyruvate synthase. The Michaelis-Menten parameters for pyruvate synthesis by PFOR are: V(max) = 1.6 unit/mg (k(cat) = 3.2 s(-1)), K(m)(Acetyl-CoA) = 9 micrometer, and K(m)(CO(2)) = 2 mm. The intracellular concentrations of acetyl-CoA, CoASH, and pyruvate have been measured. The predicted rate of pyruvate synthesis at physiological concentrations of substrates clearly is sufficient to support the role of PFOR as a pyruvate synthase in vivo. Measurements of its k(cat)/K(m) values demonstrate that ferredoxin is a highly efficient electron carrier in both the oxidative and reductive reactions. On the other hand, rubredoxin is a poor substitute in the oxidative direction and is inept in donating electrons for pyruvate synthesis.  相似文献   

20.
Genes coding for phosphoribulokinase (PRK), a key enzyme of the Calvin cycle, were localized in the genome of the chemoautotroph Alcaligenes eutrophus. The NH2-terminal sequence of the PRK subunit was determined. With a synthetic oligodeoxynucleotide probe complementary to a portion of this sequence, hybridization analysis revealed PRK genes to be located on both the chromosome and the megaplasmid pHG1 of A. eutrophus H16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号