首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of DNA Duplication and Mitochondrial DNA Insertion in the Human Genome   总被引:11,自引:0,他引:11  
The hundreds of mitochondrial pseudogenes in the human nuclear genome sequence (numts) constitute an excellent system for studying and dating DNA duplications and insertions. These pseudogenes are associated with many complete mitochondrial genome sequences and through those with a good fossil record. By comparing individual numts with primate and other mammalian mitochondrial genome sequences, we estimate that these numts arose continuously over the last 58 million years. Our pairwise comparisons between numts suggest that most human numts arose from different mitochondrial insertion events and not by DNA duplication within the nuclear genome. The nuclear genome appears to accumulate mtDNA insertions at a rate high enough to predict within-population polymorphism for the presence/absence of many recent mtDNA insertions. Pairwise analysis of numts and their flanking DNA produces an estimate for the DNA duplication rate in humans of 2.2 × 10–9 per numt per year. Thus, a nucleotide site is about as likely to be involved in a duplication event as it is to change by point substitution. This estimate of the rate of DNA duplication of noncoding DNA is based on sequences that are not in duplication hotspots, and is close to the rate reported for functional genes in other species.  相似文献   

2.
Sequences from nuclear mitochondrial pseudogenes (numts) that originated by transfer of genetic information from mitochondria to the nucleus offer a unique opportunity to compare different regimes of molecular evolution. Analyzing a 1621-nt-long numt of the rRNA specifying mitochondrial DNA residing on human chromosome 3 and its corresponding mitochondrial gene in 18 anthropoid primates, we were able to retrace about 40 MY of primate rDNA evolutionary history. The results illustrate strengths and weaknesses of mtDNA data sets in reconstructing and dating the phylogenetic history of primates. We were able to show the following. In contrast to numt-DNA, (1) the nucleotide composition of mtDNA changed dramatically in the different primate lineages. This is assumed to lead to significant misinterpretations of the mitochondrial evolutionary history. (2) Due to the nucleotide compositional plasticity of primate mtDNA, the phylogenetic reconstruction combining mitochondrial and nuclear sequences is unlikely to yield reliable information for either tree topologies or branch lengths. This is because a major part of the underlying sequence evolution model — the nucleotide composition — is undergoing dramatic change in different mitochondrial lineages. We propose that this problem is also expressed in the occasional unexpected long branches leading to the “common ancestor” of orthologous numt sequences of different primate taxa. (3) The heterogeneous and lineage-specific evolution of mitochondrial sequences in primates renders molecular dating based on primate mtDNA problematic, whereas the numt sequences provide a much more reliable base for dating.[Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

3.

Background  

Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment.  相似文献   

4.
Many copies of nuclear counterparts of mitochondrial DNA (mtDNA) were found in nuclear DNA from sperm heads of the domestic dog, Canis familiaris, by DNA-DNA hybridization and DNA sequencing. Nuclear counterparts homologous to the mtDNA D-loop region were cloned into lambda phage vectors (EMBL4 and lambda gt11), and nucleotide sequences of seven different mtDNA pseudogenes were then determined. The seven pseudogenes were E3 (474 bp; 82% homology with canine mtDNA), E13 (1867 bp; 67%), 8B (2375 bp; 78%), 12A (2650 bp; 79%), 33 (4131 bp; 86%), 47 (4251 bp; 86%), and E17 (5721 bp; 71%). These seven mtDNA pseudogenes corresponded to portions of cytoplasmic mtDNA containing the genes ile, ND1, leu, 16S rRNA, val, 12S rRNA, phe, D-loop, pro, thr, cytb, and glu. A neighbor-joining phylogenetic tree constructed from 12S rRNA sequences in mtDNA pseudogenes 8B, 33, 47, and E17 and in 10 mtDNA fragments from other species showed that these four pseudogenes form a monophyletic clade with canine mtDNA. A neighbor-joining phylogenetic tree based on the 318-bp cytb region showed that the canine pseudogenes existed before the divergence of 17 related canids, and their divergence dates were calculated at around 4.4 to 8.6 million years ago.  相似文献   

5.
At least 0.08% of the Apis mellifera nuclear genome contains sequences that originated from mitochondria. These nuclear copies of mitochondrial sequences (numts) are scattered all over the honeybee chromosomes and have originated by multiple independent insertions of mitochondrial DNA (mtDNA) as evident by phylogenetic analysis. Apart from original insertions, moderate duplications of numts also contributed to the present pattern and distribution of mitochondrial sequences in honeybee chromosomes. Assimilation of mitochondrial genes in the nuclear genome is mediated by extensive fragmentations of the original inserts. Replication slippage seems to be a major mechanism by which small sequences are inserted or deleted from mtDNA destined to nucleus. Most of the honeybee numts (84%) are located in the nongenic regions. The majority (94%) of the numts that are located in predicted nuclear genes have originated from mitochondrial genes coding for cytochrome oxidase and NADH dehydrogenase subunits. On the other hand, the mitochondrial rRNA or tRNA gene sequences are predominantly (88%) located in nongenic regions of the genome. Evidences also support for exertion of purifying selection on numts located in specific genes. Comparative analysis of numts of European, African, and Africanized honeybees suggests that numt evolution in A. mellifera is probably not demarked by speciation time frame but may be a continuous and dynamic process.  相似文献   

6.
Triant DA  DeWoody JA 《Genetica》2008,132(1):21-33
Nuclear sequences of mitochondrial origin (numts) are common among animals and plants. The mechanism(s) by which numts transfer from the mitochondrion to the nucleus is uncertain, but their insertions may be mediated in part by chromosomal repair mechanisms. If so, then lineages where chromosomal rearrangements are common should be good models for the study of numt evolution. Arvicoline rodents are known for their karyotypic plasticity and numt pseudogenes have been discovered in this group. Here, we characterize a 4 kb numt pseudogene in the arvicoline vole Microtus rossiaemeridionalis. This sequence is among the largest numts described for a mammal lacking a completely sequenced genome. It encompasses three protein-coding and six tRNA pseudogenes that span ∼25% of the entire mammalian mitochondrial genome. It is bordered by a dinucleotide microsatellite repeat and contains four transposable elements within its sequence and flanking regions. To determine the phylogenetic distribution of this numt among the arvicolines, we characterized one of the mitochondrial pseudogenes (cytochrome b) in 21 additional arvicoline species. Average rates of nucleotide substitution in this arvicoline pseudogene are estimated as 2.3 × 10−8 substitutions/per site/per year. Furthermore, we performed comparative analyses among all species to estimate the age of this mitochondrial transfer at nearly 4 MYA, predating the origin of most arvicolines. All sequences generated in this study have been deposited within the GenBank database.  相似文献   

7.
S Chao  R Sederoff    C S Levings  rd 《Nucleic acids research》1984,12(16):6629-6644
The nucleotide sequence of the gene coding for the 18S ribosomal RNA of maize mitochondria has been determined and a model for the secondary structure is proposed. Dot matrix analysis has been used to compare the extent and distribution of sequence similarities of the entire maize mitochondrial 18S rRNA sequence with that of 15 other small subunit rRNA sequences. The mitochondrial gene shows great similarity to the eubacterial sequences and to the maize chloroplast, and less similarity to mitochondrial rRNA genes in animals and fungi. We propose that this similarity is due to a slow rate of nucleotide divergence in plant mtDNA compared to the mtDNA of animals. Sequence comparisons indicate that the evolution of the maize mitochondrial 18S, chloroplast 16S and nuclear 17S ribosomal genes have been essentially independent, in spite of evidence for DNA transfer between organelles and the nucleus.  相似文献   

8.
Using sequence data from the 28S ribosomal RNA (rRNA) genes of selected vertebrates, we investigated the effects that constraints imposed by secondary structure have on the phylogenetic analysis of rRNA sequence data. Our analysis indicates that characters from both base-pairing regions (stems) and non-base-pairing regions (loops) contain phylogenetic information, as judged by the level of support of the phylogenetic results compared with a well-established tree based on both morphological and molecular data. The best results (the greatest level of support of well-accepted nodes) were obtained when the complete data set was used. However, some previously supported nodes were resolved using either the stem or loop bases alone. Stem bases sustain a greater number of compensatory mutations than would be expected at random, but the number is < 40% of that expected under a hypothesis of perfect compensation to maintain secondary structure. Therefore, we suggest that in phylogenetic analyses, the weighting of stem characters be reduced by no more than 20%, relative to that of loop characters. In contrast to previous suggestions, we do not recommend weighting of stem positions by one-half, compared with that of loop positions, because this overcompensates for the constraints that selection imposes on the secondary structure of rRNA.   相似文献   

9.
Cao SY  Wu XB  Yan P  Hu YL  Su X  Jiang ZG 《Mitochondrion》2006,6(4):186-193
The complete mitochondrial genome of Bufo gargarizans was sequenced using overlapping polymerase chain reaction (PCR) amplicons (GenBank Accession No. DQ275350). The genome is 17,277 base pairs in length, containing 13 protein-coding genes (ATP6, ATP8, COI-III, ND1-6, ND4L, Cyt b), 2 ribosomal RNAs (12S rRNA and 16S rRNA), 22 transfer RNAs and a putative control region. We analyzed the sequence using bioinformatics methods comparing the obtained mtDNA sequence with other toads and frogs. Based on the concatenated nucleotide sequences of protein-coding genes, we constructed a phylogenetic tree with maximum likelihood (ML) and maximum parsimony (MP) methods and discussed the phylogenetic relationships among 11 species of Anura.  相似文献   

10.
Nuclear mitochondrial pseudogenes (numts) are non-functional fragments of mtDNA inserted into the nuclear genome. Numts are prevalent across eukaryotes and a positive correlation is known to exist between the number of numts and the genome size. Most numt surveys have relied on model organisms with fully sequenced nuclear genomes, but such analyses have limited utilities for making a generalization about the patterns of numt accumulation for any given clade. Among insects, the order Orthoptera is known to have the largest nuclear genome and it is also reported to include several species with a large number of numts. In this study, we use Orthoptera as a case study to document the diversity and abundance of numts by generating numts of three mitochondrial loci across 28 orthopteran families, representing the phylogenetic diversity of the order. We discover that numts are rampant in all lineages, but there is no discernable and consistent pattern of numt accumulation among different lineages. Likewise, we do not find any evidence that a certain mitochondrial gene is more prone to nuclear insertion than others. We also find that numt insertion must have occurred continuously and frequently throughout the diversification of Orthoptera. Although most numts are the result of recent nuclear insertion, we find evidence of very ancient numt insertion shared by highly divergent families dating back to the Jurassic period. Finally, we discuss several factors contributing to the extreme prevalence of numts in Orthoptera and highlight the importance of exploring the utility of numts in evolutionary studies.  相似文献   

11.
Inadvertent coamplification of nuclear mitochondrial pseudogenes (numts) is a serious problem in mitochondrial systematics, but numts can also be a valuable source of information because they represent ancient forms of mtDNA. We present a conceptual framework of numt accumulation, which states that in a given species there can be two types of numts, synaponumts and autaponumts, resulting from integration occurring respectively before and after a speciation event. In a given clade, a species that diverged early can only have its own autaponumts as well as synaponumts that were already present in the genome of the last common ancestor. A species that diverged more recently may, however, have many different synaponumts integrated at each different divergence as well as its own autaponumts. Therefore it is possible to decipher the evolutionary history of a species based on the phylogenetic distribution of numts in a simultaneous analysis of numts and extant mtDNA. In this study, we test this idea empirically in the context of addressing a controversial question regarding the biogeography of the grasshopper genus Schistocerca Stål (Orthoptera: Acrididae), based on numts of the cytochrome c oxidase subunit I (COI) gene. We find that our empirical data can be explained adequately by our conceptual framework, and that the phylogenetic distribution of COI numts reveals intricate evolutionary histories about past speciation events that are otherwise difficult to detect using conventional markers. Our study strongly favours the Old World origin of the desert locust, Schistocerca gregaria and the New World Schistocerca species are descendants from an ancestral gregaria‐like species that colonized the New World via westward transatlantic flight. However, the phylogenetic distribution of S. gregaria numts raises a distinct possibility that there might have been multiple founding events from Africa to America to give rise to the present‐day diversity of the genus. This is a case study for a creative use of numts as molecular fossils, and we demonstrate that numts provide an interesting and powerful phylogenetic signal, much more than what extant mtDNA or nuclear gene sequences might be able to provide.  相似文献   

12.
The internal transcribed spacer (ITS) of nuclear ribosomal DNA has been widely used by systematists for reconstructing phylogenies of closely related taxa. Although the occurrence of ITS putative pseudogenes is well documented for many groups of animals and plants, the potential utility of these pseudogenes in phylogenetic analyses has often been underestimated or even ignored in part because of deletions that make unambiguous alignment difficult. In addition, long branches often can lead to spurious relationships, particularly in parsimony analyses. We have discovered unusually high levels of ITS polymorphism (up to 30%, 40%, and 14%, respectively) in three tropical tree species of the coffee family (Rubiaceae), Adinauclea fagifolia, Haldina cordifolia, and Mitragyna rubrostipulata. Both secondary structure stability and patterns of nucleotide substitutions in a highly conserved region (5.8S gene) were used for distinguishing presumed functional sequences from putative pseudogenes. The combination of both criteria was the most powerful approach. The sequences from A. fagifolia appear to be a mix of functional genes and highly distinct putative pseudogenes, whereas those from H. cordifolia and M. rubrostipulata were identified as putative pseudogenes. We explored the potential utility of the identified putative pseudogenes in the phylogenetic analyses of Naucleeae sensu lato. Both Bayesian and parsimony trees identified the same monophyletic groups and indicated that the polymorphisms do not transcend species boundaries, implying that they do not predate the divergence of these three species. The resulting trees are similar to those produced by previous analyses of chloroplast genes. In contrast to results of previous studies therefore, divergent putative pseudogenes can be useful for phylogenetic analyses, especially when no sequences of their functional counterparts are available. Our studies clearly show that ITS polymorphism may not necessarily mislead phylogenetic inference. Despite using many different PCR conditions (different primers, higher denaturing temperatures, and absence or presence of DMSO and BSA-TMACl), we recovered only a few functional ITS copies from A. fagifolia and none from H. cordifolia and M. rubrostipulata, which suggests that PCR selection is occurring and/or the presumed functional alleles are located at minor loci (with few ribosomal DNA copies).  相似文献   

13.
Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA‐originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last . A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein‐coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage.  相似文献   

14.
D Dunon-Bluteau  G Brun 《FEBS letters》1986,198(2):333-338
Extensive corrections of the nucleotide sequence of the Xenopus laevis mitochondrial small ribosomal subunit RNA gene [Roe et al. (1985) J. Biol. Chem. 260, 9759-9774] are reported. We found an additional fragment of 142 nucleotides and describe 25 nucleotide differences scattered in the gene. The nucleotide sequence the same gene of bovine mitochondrion. We propose a new secondary structure for the product of the X. laevis gene. Contrary to the finding of Roe et al., we observed the same general organization of stems and loops as for the human mitochondrial 12 S rRNA gene product. On the other hand, the structural homology observed between the mitochondrial and cytoplasmic small subunit rRNAs of X. laevis appears much lower. These results strongly suggest that animal vertebrate mitochondrial DNAs have followed the same evolutionary pathway.  相似文献   

15.
The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of suborder Suiformes. However, the monophyly of the suborder Ruminantia was not supported, and the branching pattern between Cetacea and the artiodactyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced, but the relationships between Artiodactyla, Cetacea, and Perissodactyla remained unresolved. Nevertheless, we found no support for a Perissodactyla + Hyracoidea clade, neither with distance approach, nor with parsimony reconstruction. The 12S rRNA was useful to solve intraordinal relationships among Ungulata, but it seemed to harbor too few informative positions to decipher the bushlike radiation of some Ungulata orders, an event which has most probably occurred in a short span of time between 55 and 70 MYA. Correspondence to: E. Douzery  相似文献   

16.
This paper summarizes our investigations into the computationaldetection of secondary and tertiary structure of ribosomal RNA.We have developed a new automated procedure that not only identifiespotential secondary and tertiary structural interactions, butalso provides the covariation evidence that supports the proposedbondings, and any counterevidence that can be detected in theknown sequences. A small number of previously unknown higher-orderstructural features have been detected in individual RNA molecules(16S rRNA and 7S RNA) through the use of our automated procedure.We are systematically studying mitochondrial rRNA, seeking tertiarystructure within 16S rRNA and quaternary structure between J6Sand23S rRNA. To test hypotheses suggested by an examination ofour program's output, our colleagues in biology are sequencingkey portions of the 23S ribosomal RNA for species in which theknown 16S ribosomal RNA exhibits variation (from the dominantpattern) at the site of a proposed bonding. Our ultimate hopeis that automated covariation analysis will contribute significantlyto a refined picture of ribosomal structure. Received on January 17, 1990; accepted on June 1, 1990  相似文献   

17.
Human 28S ribosomal RNA sequence heterogeneity.   总被引:4,自引:4,他引:0       下载免费PDF全文
DNA sequencing of several cloned human 28S ribosomal RNA gene fragments has revealed sequence heterogeneity (1) but it was not clear whether these are inactive pseudogenes or are active genes that are transcribed and represented in ribosomes. S1 nuclease analysis allowed us to examine the population of ribosomal RNA molecules of a cell, and we found that 28S rRNA is a heterogeneous assortment of molecules in both mono- and polysomal preparations. Sequence variation, although largely concentrated in variable regions of the molecule, apparently also occurs in the conserved regions.  相似文献   

18.
I Palmero  J Renart  L Sastre 《Gene》1988,68(2):239-248
cDNA clones coding for Artemia mitochondrial 16S ribosomal RNA (rRNA) have been isolated. The clones cover from nucleotide 650 of the RNA molecule to its 3' end. The comparison of Artemia sequence with both vertebrate and invertebrate mitochondrial 16S rRNA sequences has shown the existence of regions of high similarity between them. A model for the secondary structure of the 3' half of Artemia mitochondrial 16S rRNA is proposed. The size of the rRNA molecule has been estimated at 1.35 kb. Despite the similarity of the Artemia gene to insect rRNA in size, sequence and secondary structure, the G + C content of the Artemia gene (42%) is closer to that of mammals than to the insect genes. The number of mitochondria in Artemia has been estimated at 1500 per diploid genome in the cyst and 4000 in the nauplius. In contrast, the amount of mt 16S rRNA is constant at all stages of Artemia development.  相似文献   

19.
Kerr KC 《Génome》2010,53(12):1103-1109
Nuclear mitochondrial pseudogenes, or "numts", are nonfunctional copies of mitochondrial genes that have been translocated to the nuclear genome. Numts have been used to study differences in mutation rates between the nuclear and mitochondrial genomes, but have also been implicated as troublesome for phylogenetic studies and DNA-based species identification (i.e., DNA barcoding). In this study, a suspected numt discovered during a study of mitochondrial cytochrome c oxidase I (COI) diversity in North American birds was targeted and sequenced from tyrant flycatchers (family: Tyrannidae). In total, the numt was found in five taxa representing two genera. Substitution rates were compared between COI and numt sequences. None of the numt sequences harboured stop codons nor frameshift mutations, but phylogenetic analysis revealed they had accumulated more amino acid substitutions than the mitochondrial COI sequences. Mitochondrial COI appeared to be preferentially amplified in most cases, but methods for numt detection are discussed for cases like this where sequences lack obvious features for identification. Because of its persistence across a broad taxonomic lineage, this numt could form a valuable model system for studying evolution in numts. The full size of the numt and its location within the nuclear genome are yet to be determined.  相似文献   

20.
In this study, we infer the phylogenetic relationships within commercial shrimp using sequence data from a novel mitochondrial marker consisting of an approximately 530-bp region of the 16S ribosomal RNA (rRNA)/transfer RNA (tRNA)Val genes compared with two other mitochondrial genes: 16S rRNA and cytochrome c oxidase I (COI). All three mitochondrial markers were considerably AT rich, exhibiting values up to 78.2% for the species Penaeus monodon in the 16S rRNA/tRNAVal genes, notably higher than the average among other Malacostracan mitochondrial genomes. Unlike the 16S rRNA and COI genes, the 16S rRNA/tRNAVal marker evidenced that Parapenaeus is more closely related to Metapenaeus than to Solenocera, a result that seems to be more in agreement with the taxonomic status of these genera. To our knowledge, our study using the 16S rRNA/tRNAVal gene as a marker for phylogenetic analysis offers the first genetic evidence to confirm that Pleoticus muelleri and Solenocera agassizi constitute a separate group and that they are more related to each other than to genera belonging to the family Penaeidae. The 16S rRNA/tRNAVal region was also found to contain more variable sites (56%) than the other two regions studied (33.4% for the 16S rRNA region and 42.7% for the COI region). The presence of more variable sites in the 16S rRNA/tRNAVal marker allowed the interspecific differentiation of all 19 species examined. This is especially useful at the commercial level for the identification of a large number of shrimp species, particularly when the lack of morphological characteristics prevents their differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号