首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

2.
2-Oxoglutarate dehydrogenase (lipoamide) [OGDH or E1o: 2-oxoglutarate: lipoamide 2-oxidoreductase (decarboxylating and acceptor-succinating); EC 1.2.4.2] is a component enzyme of the 2-oxoglutarate dehydrogenase complex. Salmonella typhimurium gene encoding OGDH (ogdh) has been cloned in Escherichia coli. The libraries were screened for the expression of OGDH by complementing the gene in E. coli E1o-deficient mutant. Three positive clones (named Odh-3, Odh-5 and Odh-7) contained the identical 2.9 kb Sau3AI fragment as determined by restriction mapping and Southern hybridization, and expressed OGDH efficiently and constitutively using its own promoter in the heterologous host. This gene spans 2878 bases and contains an open reading frame of 2802 nucleotides encoding a mature protein of 927 amino acid residues (Mr=110,000). The comparison of the deduced amino acid sequence of the cloned OGDH with E. coli OGDH shows 91% sequence identity. To localize the catalytic domain responsible for E. coli E1o-complementation, several deletion mutants lacking each portion of the ogdh gene were constructed using restriction enzymes. From the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, a polypeptide which showed a complementation activity with an Mr of 30,000 was detected. The catalytic domain was localized in N-terminal region of the gene. Therefore, this is a first identification of the catalytic domain in bacterial ogdh gene.  相似文献   

3.
Recombinant Escherichia coli JM101 strains harbouring plasmids pWKW2 or lacUV5par8EGF, both encoding human epidermal growth factor (hEGF), were used in fermentations to optimize levels of excreted hEGF. Medium composition, inducer level, growth stage at induction and culture conditions, were optimized with respect to volumetric production of the recombinant protein. MMBL medium, with glucose at 5 g/l and tryptone as nitrogen source, was chosen. Isopropyl-β- -thiogalactopyranoside(IPTG) concentrations of 0.1 mM for E. coli JM101[pWKW2] and 0.2 mM for E. coli K-12 JM101[lacUV5par8EGF], were found to give the best hEGF production levels. The volumetric yields of hEGF were maximal when the cultures were induced in the mid-logarithmic phase. Growth temperature had a significant effect on hEGF yield. A simple continuous fed-batch process for cultivation of E. coli JM101[pWKW2] was developed. The maximum concentration of excreted hEGF attained in continuous fed-batch cultivation was 325 mg/l, as compared to 175 mg/l, in batch cultivation. The hEGF produced from the continuous fed-batch cultivation was substantiated by SDS-PAGE and immunoblotting.  相似文献   

4.
5.
大肠杆菌血红素过氧化物酶EfeB属于染料脱色过氧化物酶超家族。该家族的酶类一般具有良好的合成染料降解能力,但是其在生物体内的功能尚不清楚。为了深入研究EfeB的生理功能,本文通过同源重组的方法构建了efeB敲除菌株Eco△efeB,比较了亲本菌株E.coli BL21和Eco△efeB在基因组转录水平上、不同条件下的细胞生长以及对铁离子应答上的差异。结果表明:efeB基因的缺失引起了菌体1 765个基因的差异表达,这些基因主要与菌体的细胞代谢途径、细胞膜合成和鞭毛运动有关;在pH为7.0时,BL21和EcoΔefeB的生长无显著差异,但在pH4.5时BL21的生长明显优于EcoΔefeB,efeB基因的功能性表达可以支持大肠杆菌在低pH下的生存;当培养环境中有Fe2+存在时,efeB显著上调。以上结果为EfeB生理功能的认知和利用提供了一定的理论依据。  相似文献   

6.
Development of cloning vehicles from the Streptomyces plasmid pFJ103   总被引:8,自引:0,他引:8  
A 20-kb plasmid, pFJ103, was isolated from a strain of Streptomyces granuloruber. A restriction endonuclease map of the plasmid was constructed. A Streptomyces gene that specifies resistance to the antibiotic thiostrepton was subcloned into Escherichia coli plasmid pBR322, inserted into pFJ103 and transformed into Streptomyces ambofaciens protoplasts. Two classes of transformants were obtained. One carries the pFJ104 plasmid consisting of the entire pFJ103 with the 1.8-kb thiostrepton resistance gene insert. The other carries the pFJ105 plasmid consisting of the 2.9-kb replicon segment of pFJ103 with the same thiostrepton resistance insert. A gene for neomycin resistance together with the entire E. coli pBR322 plasmid were cloned into pFJ105. The resulting E. coli-Streptomyces bifunctional vector, pFJ123, transformed both E. coli and Streptomyces. The small size of pFJ105, its ease of isolation, and efficient transformation of Streptomyces protoplasts establishes it, and its derivatives, as useful plasmid cloning vehicles for fundamental and applied studies  相似文献   

7.
8.
We have developed the economical and convenient biocatalytic process for the preparation of (R)-1,3-butanediol (BDO) by stereo-specific microbial oxido-reduction on an industrial scale. (R)-1,3-BDO is an important chiral synthon for the synthesis of various optically active compounds such as azetidinone derivatives lead to penem and carbapenem antibiotics.

We studied on two approaches to obtain (R)-1,3-BDO. The first approach was based on enzyme-catalyzed asymmetric reduction of 4-hydroxy-2-butanone; the second approach was based on enantio-selective oxidation of the undesired (S)-1,3-BDO in the racemate. As a result of screening for yeasts, fungi and bacteria, the enzymatic resolution of racemic 1,3-BDO by the Candida parapsilosis IFO 1396, which showed differential rates of oxidation for two enantiomers, was found to be the most practical process to produce (R)-1,3-BDO with high enantiomeric excess and yield.

We characterized the (S)-1,3-BDO dehydrogenase purified from a cell-free extract of C. parapsilosis. This enzyme was found to be a novel secondary alcohol dehydrogenase (CpSADH). We have attempted to clone and characterize the gene encoding CpSADH and express it in Escherichia coli. The CpSADH activity of a recombinant E. coli strain was more than two times higher than that of C. parapsilosis. The production yield of (R)-1,3-BDO from the racemate increased by using the recombinant E. coli strain. Interestingly, we found that the recombinant E. coli strain catalyzed the reduction of ethyl 4-chloro-3-oxo-butanoate to ethyl (R)-4-chloro-3-hyroxy-butanoate with high enantiomeric excess.  相似文献   


9.
A superior novel recombinant strain, E. coli BL21(DE3)/pETNHM, containing the start codon mutation of the subunit, was constructed and selected as an overexpression and high efficient mutation platform for the genetic manipulation of the nitrile hydratase (NHase). Under optimal conditions, the specific activity of the recombinant strain reached as high as 452 U/mg dry cell. Enzymatic characteristics studies showed that the reaction activation energy of the recombinant NHaseM was 24.4 ± 0.5 kJ/mol, the suited pH range for catalysis was 5.5–7.5, and the Km value was 4.34 g/L (82 mM). To assess the feasibility of the NHase improvement by protein rational design using this E. coli, site-directed mutagenesis of S122A, S122C, S122D and βW47E of the NHaseM were carried out. The NHaseM (S122A) and NHaseM (S122D) mutants were entirely inactive due to the charge change of the side-chain group. The product tolerance of the NHaseM (S122C) mutant was enhanced while its activity decreased by 30%. The thermo-stability of the NHaseM (βW47E) mutant was significantly strengthened, while its activity reduced by nearly 50%. These results confirmed that the specific activity of the mutant NHase expressed by the recombinant E. coli BL21(DE3)/pETNHM can reasonably change with and without mutations. Therefore, this recombinant E. coli can be efficiently and confidently used for the further rational/random evolution of the NHase to simultaneously improve the activity, thermo-stability and product tolerance of the target NHase.  相似文献   

10.
We verified the efficacy of lipopolysaccharide (LPS) in activating the cecropin B gene (CecB) in an immune-competent Bombyx mori cell line. Strong activation of CecB by the LPSs from Escherichia coli, Pseudomonas aeruginosa, and Salmonella minnesota were completely eliminated after digestion of the LPSs with muramidase. The results clearly indicate that a polymer form of PGN in the LPSs elicited CecB. An oligonucleotide microarray screen revealed that none of the 16,000 genes on the array were activated by LPS in the cells. In contrast, E. coli PGN strongly elicited five antibacterial peptide genes and numerous other genes, and PGN from Micrococcus luteus activated only several genes. Semi-quantitative RT-PCR revealed that all antibacterial genes activated by both PGNs, but the extents were 10–100 times higher with E. coli PGN. Similarly, higher elicitor activity of E. coli than M. luteus was indicated using peptidoglycan recognition protein gene, which is involved in pro-phenol oxidase cascade.  相似文献   

11.
Three C terminal His6-tagged recombinant microbial CMP–sialic acid synthetases [EC 2.7.7.43] cloned from Neisseria meningitidis group B, Streptococcus agalactiae serotype V, and Escherichia coli K1, respectively, were evaluated for their ability in the synthesis of CMP–sialic acid derivatives in a one-pot two-enzyme system. In this system, N-acetylmannosamine or mannose analogs were condensed with pyruvate, catalyzed by a recombinant sialic acid aldolase [EC 4.1.3.3] cloned from E. coli K12 to provide sialic acid analogs as substrates for the CMP–sialic acid synthetases. The substrate flexibility and the reaction efficiency of the three recombinant CMP–sialic acid synthetases were compared, first by qualitative screening using thin layer chromatography, and then by quantitative analysis using high performance liquid chromatography. The N. meningitidis synthetase was shown to have the highest expression level, the most flexible substrate specificity, and the highest catalytic efficiency among the three synthetases. Finally, eight sugar nucleotides, including cytidine 5′-monophosphate N-acetylneuraminic acid (CMP–Neu5Ac) and its derivatives with substitutions at carbon-5, carbon-8, or carbon-9 of Neu5Ac, were synthesized in a preparative (100–200 mg) scale from their 5- or 6-carbon sugar precursors using the N. meningitidis synthetase and the aldolase.  相似文献   

12.
Isolation and characterization of the yeast aspartyl-tRNA synthetase gene   总被引:3,自引:0,他引:3  
A yeast genomic library in Escherichia coli, constructed by insertion of Sau3A restriction fragments into the hybrid Saccharomyces cerevisiae-E. coli plasmid pFL1, was screened by a radioimmunoassay (RIA) for colonies expressing yeast aspartyl-tRNA synthetase (AspRS). Four clones were isolated by this technique. Data obtained by Southern and restriction analysis of the inserts showed a common 3.8-kb BamHI restriction fragment which, when inserted into the plasmid pFLl, gave a positive RIA. Several controls showed that this 3.8-kb insert codes for the entire AspRS : (i) S. cerevisiae transformed by the PFL1 plasmid carrying the 3.8-kb fragment overproduces AspRS activity by a factor of ten compared to the wild-type yeast strain; and (ii) a new protein with electrophoretic behaviour similar to AspRS and immuno-reactive toward anti-AspRS appears in crude extracts of transformed yeast and E. coli.  相似文献   

13.
Whole cells of an Escherichia coli strain overexpressing Acinetobacter sp. NCIB 9871 cyclohexanone monooxygenase (CHMO; E.C. 1.14.13.22) have been used for the Baeyer-Villiger oxidation of representative heterocyclic six-membered ketones to probe the potential impact of nitrogen, sulfur and oxygen on the chemoselectivity of these reactions. The fact that all of these heterocyclic systems were accepted as substrates by the enzyme and gave normal Baeyer-Villiger products broadens the synthetic utility of the engineered E. coli strain and emphasizes the chemoselectivity achievable with enzymatic oxidation catalysts.  相似文献   

14.
Activity of the flavonoids apigenin, baicalin and galangin against sensitive and antibiotic resistant strains of Staphylococcus aureus, Enterococcus faecalis, E. faecium, Escherichia coli and Pseudomonas aeruginosa was investigated. Using an agar dilution assay, galangin was shown to have a minimum inhibitory concentration (MIC) of 25 to 50 μg/mL against all six strains of S. aureus but negligible activity against the other species. Apigenin displayed only marginal activity against S. aureus and no activity was detected from baicalin. In inhibition curve studies, galangin caused a 100,000-fold decrease in the viability of a growing population of S. aureus NCTC 6571 within the first two hours of treatment. Decreases in viability of S. aureus NCTC 11561 and NCIMB 9968 populations were also observed.  相似文献   

15.
A total of 177 naturally contaminated water samples were analyzed by membrane filtration according to the Standard Methods for the Examination of Water and Wastewater published by the American Public Health Association. Filters were incubated in parallel on mHPC-agar and 3M™ Petrifilm™ Aerobic Count Plates (Petrifilm™ AC plates) for heterotrophic counts. Fecal coliforms and Escherichia coli were enumerated on mFC-agar and 3M™ Petrifilm™ E. coli/Coliform Count Plates (Petrifilm™ EC plates). Typical colonies on each media type were confirmed following standard procedures. Heterotrophic counts were between 103 and 104 CFU/mL and the average log10 counts obtained on Petrifilm™ AC plates were about two-fold lower than on mHPC-agar. Counts for fecal coliforms and E. coli were between 102 and 103 CFU/mL. Average log10 counts for confirmed fecal coliforms obtained on Petrifilm™ EC plates were slightly lower than on mFC agar with a correlation coefficient of 0.949. The average log10 counts for confirmed E. coli on Petrifilm™ EC plates and on mFC agar were statistically not different (P=0.126) with a correlation coefficient of 0.879. Specificity of Petrifilm™ EC plates and mFC agar was evaluated by comparing typical colony counts with confirmed counts. On mFC agar, counts for typical colonies were by 2 log10 CFU higher than the actual confirmed counts. In contrast, on Petrifilm™ EC plates typical colony counts were almost identical to confirmed colony counts for both fecal coliforms and E. coli. This comparison illustrates the high specificity of Petrifilm™ EC plates for enumeration of both fecal coliforms and E. coli in water.  相似文献   

16.
17.
Glucose binding protein (GBP) from Escherichia coli has been widely used to develop minimally invasive glucose biosensors for diabetics. To develop a cell-based glucose biosensor, it is essential to functionally display GBP on the cell surface. In this study, we designed a molecular structure to display GBP on the outer membrane of E. coli. We fused GBP with the first nine N-terminal residues of Lpp (major E. coli lipoprotein) and the 46–150 residues of OmpA (an outer membrane protein of E. coli). With this molecular design, we have successfully displayed GBP on the surface of E. coli. Using FITC-conjugated Dextran, we demonstrated that glucose’s binding sites of surface-displayed GBP were accessible to glucose. Furthermore, we showed that glucose transport in a GBP-deficient E. coli NM303 could be restored by displaying GBP on the surface of NM303. 0.51 h−1 of specific growth rate was attained for NM303/pESDG grown in M9 minimal medium supplemented with 2 g/l glucose, whereas no growth was observed for NM303 in the same medium. Both NM303 and NM303/pESDG grew in M9 medium supplemented with 1 mM of fucose. Because cell surface is an interface between intracellular and extracellular molecular events, this technique paves a way to develop cell-based glucose biosensors.  相似文献   

18.
Salmelin C  Vilpo J 《Mutation research》2002,500(1-2):125-134
Chlorambucil (CLB; N,N-bis(2-chloroethyl)-p-aminophenylbutyric acid) is a bifunctional alkylating agent widely used as an anticancer drug and also as an immunosuppressant. Its chemical structure and clinical experience indicate that CLB is mutagenic and carcinogenic. We have investigated the ability of CLB to induce mutations and gene expression changes in the wild-type (WT) Escherichia coli strain AB1157 and in the base excision repair-deficient (alkA1, tag-1) E. coli strain MV1932 using a rifampicin (rif) forward mutation system and a cDNA array method. The results showed that CLB is a potent mutagen in MV1932 cells compared with the E. coli WT strain AB1157, emphasizing the role of 3-methyladenine DNA glycosylases I and II in protecting the cells from CLB-induced DNA damage and subsequent mutations. Global gene expression profiling revealed that nine genes in WT E. coli and 100 genes in MV1932, of a total of 4290 genes, responded at least 2.5-fold to CLB. Interestingly, all of these MV1932 genes were downregulated, while 22% were upregulated in WT cells. The downregulated genes in MV1932 represented most (19/23) functional categories, and unexpectedly, many of them code for proteins responsible for genomic integrity. These include: (i) RecF (SOS-response, adaptive mutation), (ii) RecC (resistance to cross-linking agents), (iii) HepA (DNA repair, a possible substitute of RecBCD), (iv) Ssb (DNA recombination repair, controls RecBCD), and (v) SbcC (genetic recombination). Our results strongly suggest that in addition to the DNA damage itself, the downregulation of central protecting genes is responsible for the decreased cell survival (demonstrated in a previous work) and the increased mutation rate (this work) of DNA repair-deficient cells, when exposed to CLB.  相似文献   

19.
In this study, 2H and 31P-NMR techniques were used to study the effects of trehalose and glycerol on phase transitions and lipid acyl chain order of membrane systems derived from cells of E. coli unsaturated fatty acid auxotroph strain K1059, which was grown in the presence of [11,11-2H2]-oleic acid or [11,11-2H2]-elaidic acid. From an analysis of the temperature dependence of the quadrupolar splitting it could be concluded that neither 1 M trehalose or glycerol generally had any significant effect on the temperature of the lamellar gel to liquid-crystalline phase transition. In the case of the oleate-containing hydrated total lipid extract, glycerol but not trehalose caused a 5°C increase of this transition temperature. In general, both cryoprotectants induced an ordering of the acyl chains in the liquid-crystalline state. Trehalose and glycerol both decrease the bilayer to non-bilayer transition temperature of the hydrated lipid extract of oleate-grown cells by about 5°C, but only trehalose in addition induces an isotropic to hexagonal (HII) phase transition. In the biological membranes, trehalose and not glycerol destabilised the lipid bilayer, and in the case of the E. coli spheroplasts, part of the induced non-bilayer structures is ascribed to a hexagonal (HII) phase in analogy with the total lipids. Interestingly, 1 mM Mg2+ was a prerequisite for the destabilisation of the lipid bilayer. In the hydrated total lipid extract of E. coli grown on the more ordered elaidic acid, both transition temperatures were shifted about 20°C upwards compared with the oleate-containing lipid, but the effect of trehalose on the lipid phase behaviour was similar. The bilayer destabilising ability of trehalose might have implications for the possible protection of biological systems by (cryo-)protectants during dehydration, in that protection is unlikely to be caused by preventing the occurrence of polymorphic phase transitions.  相似文献   

20.
Ichiro N. Maruyama  Sydney Brenner   《Gene》1992,120(2):135-141
A bacteriophage λ cloning vehicle has been constructed for the generation of cDNA libraries. The vector has the following properties. (1) It has a unique BamHI site engineered into the λ gam gene. Segments of DNA can be cloned into this site and clones with an insert can be selected by their ability to grow on an Escherichia coli host lysogenic for phage P2 (Spi phenotype). (2) When the recombinant phage infects a Cre-producing E. coli strain, a site-specific recombination event results in the excision of a plasmid replicon with the cloned insert. (3) Single-stranded DNAs can be recovered by growing helper M13 phages on bacteria harboring such plasmids. The vector, λMGU2, has been used to construct a nematode (Caenorhabditis elegans) cDNA library.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号