首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In adult Xenopus laevis, innervation of the vocal organ is more robust in males than in females. This sex difference originates during tadpole development; at stage 56, when the gonads first differentiate, the number of axons entering the larynx is the same in the sexes, but by stage 62, innervation is greater in males. To determine if androgen secretion establishes sex differences in axon number, we treated tadpoles with antiandrogen or androgen beginning at stage 48 or 54 and counted laryngeal nerve axons at stage 62 using electron microscopy. When male tadpoles were treated with the antiandrogen hydroxyflutamide, axon numbers were reduced to female-typical values; axon numbers in females were unaffected by antiandrogen treatment. When female tadpoles were treated with the androgen DHT (dihydrotestosterone), axon numbers were increased to male-like values. These findings suggest that endogenous androgen secretion during late tadpole stages in males is required for the sexual differentiation of laryngeal innervation observed from stage 62 on. Because androgen treatment and laryngeal innervation affect myogenesis in postmetamorphic frogs, numbers of laryngeal dilator muscle fibers were determined for hormonally manipulated tadpoles. At stage 62, vehicle-treated males had more laryngeal axons than females; laryngeal muscle fiber numbers did not, however, differ in the sexes. Both male and female tadpoles, treated from stage 54 with DHT, had more muscle fibers at stage 62 than vehicle-treated controls. Thus, while endogenous androgen secretion during late tadpole stages is subthreshold for the establishment of masculinized muscle fiber numbers, laryngeal myogenesis is androgen sensitive at this time and can be increased by suprathreshold provision of exogenous DHT. A subgroup of tadpoles, DHT treated from stage 54 to 62, was allowed to survive, untreated, until postmetamorphic stage 2 (PM2: 5 months after metamorphosis is complete). Androgen treatment between tadpole stages 54 and 62 does not prevent the ontogenetic decrease in axon numbers characteristic of laryngeal development. In addition, the elevation in stage 62 axon numbers produced by DHT-treatment at late tadpole stages was not associated with elevated numbers of laryngeal muscle fibers at PM2. Juvenile males normally maintain elevated axon numbers (relative to final adult values) through PM2 and the presence of these additional axons may result from-rather than contribute directly to—laryngeal muscle fiber addition. 1994 John Wiley & Sons, Inc.  相似文献   

2.
Studies have been made on changes in the electrical properties of muscle membrane and lipid content of two types of myotomal fibers in the tail of tadpoles during metamorphosis. It was shown that during premetamorphosis, peripheral and inner muscle fibers do not differ with respect to their effective resistance, time constant of the membrane and lipid content; the resting membrane potential is higher in the inner fibers. During further development of the tadpoles, differentiation of muscle fibers takes place, and to the beginning of the climax the inner fibers attain lower values of the effective resistance and time constant, as well as lower content of lipids in their sarcoplasm; the difference in the level of resting membrane potential between the peripheral and inner fibers increases. The data obtained suggest that the inner fibers may be referred to as fast ones, whereas the peripheral ones--as slow. These data also reveal specific features in neurotrophic regulation of functional properties of muscle fibers in tadpoles.  相似文献   

3.
The neural apparatus of the aorta, abdominal vein, ischiatic, femoral, pulmonary and caudal vessels has been studied histochemically in tadpoles (the 30th-50th stages of development) and in 1-year-old animals. It has been stated for the first time that in the frog, a representative of the Amphibia class, like in mammals and birds, formation of the adrenergic apparatus in various vessels does not take place simultaneously. For instance, the first adrenergic fibers in the hind limb vessels appear much earlier than in other arteries and veins. The process of the adrenergic innervation development and its completion in vessels of various areas is taking its course differently. In the aorta and in the abdominal vein the formation of the adrenergic plexus develops as increasing density and amount of the mediator in the adrenergic fibers and is completed with maturation in an adult animal. In contrast to these vessels, maturation of the adrenergic apparatus in the hind limb arteries and veins takes place during a shorter interval and is completed at the end of metamorphosis AchE-containing fibers are revealed in tadpoles, as well as in a mature frog only in the aortal arc and in the pulmonary artery. In these vessels the development of cholinergic innervation leaves behind that of the adrenergic innervation, as it does in the vessels of Mammalia, and the human subject.  相似文献   

4.
In experiments on the frog Rana temporaria, studies have been made on the effect of selection of the parental sperm by quaternary ammonium compounds--tetraethylammonium and tetramethylammonium, as well as by chelating agents--EDTA and EGTA--on the heat resistance of muscle tissue in the progeny of the first generation. It was found that selection of the sperm for its maximum stability to the injurious (immobilizing) effect of these drugs affects quantitative relationship in the family between tadpoles with a high and low heat resistance of muscle fibers. Insemination of the eggs by the sperm with maximum stability to elimination by TEA and TMA favours the development of tadpoles with relatively low heat resistance of muscle fibers. On the contrary, sperm selection by EDTA and EDTA increases the amount of tadpoles with a higher heat resistance of muscles.  相似文献   

5.
Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-microns frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type. The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofibrils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for 'myofibrillar' adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation. Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

6.
Summary We examined the immunocytochemical distribution of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis, in the di-and mesencephalon of developing bullfrog tadpoles. Special attention was given to catecholaminergic innervation of the median eminence and pituitary. In premetamorphic tadpoles, tyrosine hydroxylase-immunoreactive neurons were visualized in the suprachiasmatic and infundibular hypothalamus, the ventral thalamus, and midbrain tegmentum by Taylor-Kollros stage V. The number of labeled neurons in all these areas increased as metamorphosis progressed. By mid-prometamorphosis, labeled neurons appeared in the preoptic recess organ as well as in the posterior thalamic nucleus. The majority of cells in the preoptic recess organ, as well as occasional neurons in the suprachiasmatic nucleus, exhibited labeled processes which projected through the ependymal lining of the preoptic recess to contact cerebrospinal fluid. The modified CSF-contacting neurons of the nucleus of the periventricular organ were devoid of specific staining. By late prometamorphosis, labeled fibers from the suprachiasmatic nucleus were observed projecting caudally to enter the hypothalamo-hypophysial-tract en route to innervating the median eminence and pituitary. Labeled fibers arising from the dorsal infundibular nucleus projected ventrolaterally to contribute to catecholaminergic innervation of the median eminence and pituitary. Immunoperoxidase staining of tyrosine hydroxylase-immunoreactive fibers and terminal arborizations in the median eminence were restricted to non-ependymal layers, while labeled fibers in the pituitary were observed in the pars intermedia and pars nervosa. Staining of tyrosine hydroxylase-immunoreactive fibers in the median eminence and pituitary was sparse or absent in premetamorphic tadpoles, but became increasingly more intense as metamorphosis progressed.  相似文献   

7.
Juvenile androgen treatment during developmental synapse elimination changes the pattern of innervation in the adult levator ani (LA), an androgen-sensitive muscle (Jordan, Letinsky, and Arnold, 1989b). Most notably, such adult muscles contain an unusually high number of muscle fibers that are innervated by two or more axons indicating that these fibers are multiply innervated. Juvenile androgen treatment also increases the adult level of preterminal branching, the number of junctional sites per adult fiber, and the size of adult LA muscle fibers and motoneurons in the spinal nucleus of the bulbocavernosus (SNB). The present study was designed to determine when in development androgen treatment is most effective in maintaining multiple innervation in adulthood and whether there are different critical periods for the different effects of juvenile androgen treatment. Male rats were castrated on 7, 21, or 34 days after birth (roughly corresponding to the beginning, middle, and end of synapse elimination in the LA muscle) and treated daily with testosterone propionate for the next 2 weeks. All rats were sacrificed at 9 weeks and their spinal cords and LA muscles were stained and analyzed. Only during the first treatment period (7-20) did androgen treatment result in increased levels of multiple innervation at 9 weeks. During this period, androgen also increased the number of junctional sites per fiber and the size of SNB somata but did not influence the adult level of preterminal branching or the diameter of adult LA muscle fibers. Androgen treatment during the two later periods increased the level of preterminal branching and the size of LA muscle fibers without influencing the level of multiple innervation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We studied the fiber type composition and contractile properties of mouse soleus motor units at 2 days, 5 days and 2 weeks of age. We used Lucifer Yellow injection to mark muscle fibers belonging to the same motor unit in the two youngest age groups, and the traditional method of glycogen depletion in the oldest. The age groups were chosen because 2 days is at the end of muscle fiber production; 5 days is at the start of synapse elimination in the muscle and 2 weeks is at the end. Muscle fibers were classified as fast (F) or slow (S) on the basis of their myosin heavy chain (MHC) content, as determined by different monoclonal antibodies. Motor units are already dominated by either F- or S-fibers at 2 days, suggesting an early preferential innervation of the two types of fibers. A substantial part of the remaining refinement of the innervation takes place during the next 3 days, while the total number of terminals in the muscle remains constant. This is most easily explained by an exchange of aberrant for correct synapses during this period. A smaller part of the refinement of the innervation occurs during the subsequent period of synapse elimination.  相似文献   

9.
The pattern of innervation in 13 chicken hindlimb muscles was studied at various stages of development in order to examine the mechanisms which regulate its formation. The pattern of innervation was visualized by examining the distribution of fiber types within each muscle. It was found that the fiber type which a myotube acquired was influenced by both its time of formation and its position within a muscle. The earliest generation of myotubes (primary) had a marked tendency to become type I fibers, whereas, in contrast, the later generation of myotubes (secondary) tended to differentiate into type II fibers. There were regions of muscle, however, in which primary myotubes differentiated into type II fibers and other regions in which secondary myotubes acquired type I characteristics. During the development of some muscles the pattern of fiber types changed as a result of either a selective loss of type I fibers or, in other cases, a rearrangement of some of the initial neuromuscular contacts. These observations are consistent with the pattern of innervation of a muscle being established as a result of differential projection patterns of fast and slow motoneurons and the existence of some type of chemoaffinity where particular myotubes are preferentially innervated by particular motoneurons.  相似文献   

10.
This is the first study which describes the innervation of some eyelid structures, such as the glands of Moll and the glands of Zeiss. It is also the first to investigate the innervation pattern of the eyelid as a whole. We have studied the acetylcholinesterase-positive and paraformaldehyde-induced-fluorescence-positive (FIF+) innervation pattern of the different structures that constitute the upper eyelid of the sheep. There is widespread acetylcholinesterase-positive innervation in the epithelium, but not such an abundant FIF+ innervation. Both types of innervation are represented in the connective tissue by trunks or fibers that are distributed towards the different structures immersed within them. In the glands of Zeiss, cholinesterase-positive innervation is much more widespread than FIF innervation. On the contrary, the glands of Moll present denser FIF+ innervation than acetylcholinesterase-positive innervation. The Meibomian glands and the lachrymal glands show a rich acetylcholinesterase-positive and FIF+ innervation. Eyelid muscle innervation is mainly acetylcholinesterase-positive. In the conjunctive membrane there is no acetylcholinesterase-positive innervation, and only scarce FIF+ fibers can be demonstrated.  相似文献   

11.
In bifunctional dorsoventral muscle M-120 of the locust Locusta migratoria migratorioides three groups of fibers have been found which differ with respect to their electrophysiological properties. The evoked fast potentials in the fibers of caudal portion differed from fast potentials observed in the fibers of rostral and intermediate portions of the muscle. In the fibers of the caudal and intermediate portions of muscle, not only fast, but other depolarization potentials were also recorded which differ in the amplitude and duration, as well as the inhibitory postsynaptic potentials. It was shown that fibers in these three parts of the muscle differ in their voltage-current properties. It is concluded that different types of potentials are due to peculiarities of innervation and to structural heterogeneity of muscle fibers.  相似文献   

12.
Innervation of regenerated spindles in muscle grafts of the rat   总被引:1,自引:0,他引:1  
Summary Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-m frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type.The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofi-brils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for myofibrillar adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment, of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation.Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

13.
When the trochlear nerve (NIV), which innervates the superior oblique muscle (SOM), is crushed or cut at stages 48-49 in Xenopus tadpoles, fibers from the oculomotor nerve (NIII) sprout and invade the SOM. The maximal percentage of specimens having at least one oculomotor nerve fiber on the SOM on a given day increased from 9.1% following a single crushing of NIV to 84.2% following three successive severings of NIV and the average number of silver-impregnated NIII fibers per specimen increased from 0.23 +/- 0.16 (mean +/- S.E.M.) in the single-crush experiment to 7.35 +/- 1.33 in the triple-cut experiment. This increase directly reflects the delay in the return of NIV. As NIV returns to the SOM, a portion of the inappropriate innervation is lost; while another portion appears to be stable and is in evidence 90 days after a single sectioning of NIV. The more rapidly NIV returns to the SOM, the more complete is the displacement of the NIII fibers. This suggests that the association between NIII and the SOM changes with time so that easy displacement of the inappropriate innervation is likely only when the reinnervation by the appropriate nerve fibers is rapid.  相似文献   

14.
We have compared the development of fast and slow motor innervation in the neonatal rabbit soleus, a muscle which contains two distinct motor unit types during the early period of polyneuronal innervation. The innervation state of individual muscle fibers was ascertained using an intracellular electrode; a fluorescent dye was then injected into particular fibers to permit subsequent identification of histochemical type. We found no significant difference in the time course of synapse elimination for fast and slow motor units as judged by the percentage of fibers remaining polyneuronally innervated at two ages: 7-8 days, when most fibers are multiply innervated, and 10-11 days, when the level of polyinnervation is low. In a second experiment, we examined a phenomenon in which compound end-plate potentials were occasionally seen in muscle fibers at an age (17-23 days) well past the major episode of synapse elimination. We present evidence that this apparent polyinnervation in fact derives from an electrode-induced electrical coupling artifact and that genuinely polyinnervated fibers are very rare at this stage, if present at all.  相似文献   

15.
The distribution of innervation zones was investigated in 3 subjects for 17 muscles and 8 muscle groups in the upper and lower limb, by detecting bi-directional propagation of motor unit action potentials (MUAPs) with the multichannel surface electrode array. Clarification of the distribution of innervation zones depended on the ease in detecting the propagation of MUAPs and the actual scattering of innervation zones, which were closely related with muscle morphology with respect to the arrangements of muscle fibers. In muscles having fibers running parallel to each other, such as the biceps brachii, intrinsic hand muscles, vastus lateralis and medialis, tensor fasciae latae, peronei, soleus, tibialis anterior, and hypothenar muscles in the foot, it was relatively easy to detect the propagating MUAPs, and the innervation zones were distributed in a relatively narrow band around muscle belly. On the other hand, in muscles with a complicated structure including pinnation of muscle fibers, in-series muscle fibers and aponeurotic tissues, such as the deltoid, flexors and extensors in the forearm, rectus femoris, sartorius, hamstrings and gastrocnemius, it was more difficult to detect the propagating MUAPs and to identify the innervation zones, which were widely scattered or distributed in complex configurations. The distribution of the innervation zones clarified in the present study can be used to find the optimal location of electrodes in surface EMG recordings and of stimulus electrodes in the functional and therapeutic electrical stimulations. It may also be useful in motor point biopsy for diagnosis of neuromuscular diseases as well as in the botulinum toxin injection for the treatment of spasticity.  相似文献   

16.
Young male rats were castrated at 7 days of age, and treated with testosterone propionate daily from 7 to 34 days of age. At 13 months of age, motor axons and terminals innervating the levator ani (LA) muscle were stained with tetranitroblue tetrazolium (TNBT). The number of separate axons innervating individual muscle fibers was counted, and muscle fiber diameter was measured. Previous studies have shown that this androgen treatment increases muscle fiber diameter and delays synapse elimination, measured as (1) a greater percentage of muscle fibers innervated by multiple axons and (2) larger motor units. The present results indicate that the androgenic effect on synapse elimination is permanent, in that high levels of multiple innervation persisted for 12 months after the end of androgen treatment. In contrast, the effect on muscle fiber diameter was not maintained for this period. This dissociation of androgenic effects on the pattern of innervation from androgenic effects on muscle fiber diameter offers further evidence that the androgenic maintenance of multiple innervation is not dependent on muscle fiber size. In addition, circulating testosterone levels were measured at 50 and 60 days of age in animals similarly treated with androgen or oil from 7 to 34 days of age. By 60 days of age, testosterone levels in hormone-treated animals had dropped below detectability, comparable to levels in oil-treated controls. This provides additional evidence that androgen treatment during juvenile development can have permanent effects on the adult pattern of innervation in the LA muscle.  相似文献   

17.
Effects of hindlimb unloading during the first 3 months after birth on the development of soleus muscle fibers were studied in rats. The mean absolute weigh and cross-sectional area of whole soleus muscle in the unloaded rats were -1/3 and 1/4 of those in the controls, respectively. But the unloading did not affect the lengths of muscle, at 90 degrees of ankle joint angle, and of muscle fibers sampled from tendon to tendon, and the total sarcomere number. Since the total number of fibers in soleus was not affected either, the inhibited increase of muscle mass following unloading was mainly due to the smaller CSA of individual fibers. Numbers of both myonuclei and satellite cells were significantly less in unloaded than control rats. The % distribution of fibers expressing pure type I myosin heavy chain was significantly less in unloaded than controls (-23 %). Further, muscle fibers with multiple innervation were noted in the unloaded rats. It is suggested that the development and/or differentiation of soleus muscle fibers are closely associated with gravitational loading and that the growth-associated increase in fiber number may be genetically programmed.  相似文献   

18.
Young male rats were castrated at 7 days of age, and treated with testosterone propionate daily from 7 to 34 days of age. At 13 months of age, motor axons and terminals innervating the levator ani (LA) muscle were stained with tetranitroblue tetrazolium (TNBT). The number of separate axons innervating individual muscle fibers was counted, and muscle fiber diameter was measured. Previous studies have shown that this androgen treatment increases muscle fiber diameter and delays synapse elimination, measured as (1) a greater percentage of muscle fibers innervated by multiple axons and (2) larger motor units. The present results indicate that the androgenic effect on synapse elimination is permanent, in that high levels of multiple innervation persisted for 12 months after the end of androgen treatment. In contrast, the effect on muscle fiber diameter was not maintained for this period. This dissociation of androgenic effects on the pattern of innervation from androgenic effects on muscle fiber diameter offers further evidence that the androgenic maintenance of multiple innervation is not dependent on muscle fiber size. In addition, circulating testosterone levels were measured at 50 and 60 days of age in animals similarly treated with androgen or oil from 7 to 34 days of age. By 60 days of age, testosterone levels in hormone-treated animals had dropped below detectability, comparable to levels in oil-treated controls. This provides additional evidence that androgen treatment during juvenile development can have permanent effects on the adult pattern of innervation in the LA muscle.  相似文献   

19.
The ultrastructural characteristics of the innervation established by MIP-(Mytilus inhibitory peptide) immunoreactive neurons was investigated in the heart of the snail, Helix pomatia, applying correlative light- and electron microscopic pre-embedding immunocytochemistry on Vibratome-slices. In both the auricle and ventricle, the muscle fibers receive a rich innervation by MIP-immunoreactive (IR) varicose fibers. However, the innervation is seasonally changing in the two parts of the heart. The varicosities, containing a morphologically uniform population of large (120-150 nm) electron-dense granules, can be found in three different positions in relation to the muscle fibers: (i) close (15-20 nm) but unspecialized membrane connections between MIP-(IR) varicosities and muscle fibers; (ii) MIP-IR varicosities located relatively far (0.5-several microm) from the muscles fibers; (iii) MIP-IR profiles localized freely in the extracellular space among the loosely arranged muscle fibers. A general modulatory role of MIP in regulating the heart activity of Helix is suggested.  相似文献   

20.
Synaptic size, synaptic remodelling, polyneuronal innervation, and synaptic efficacy of neuromuscular junctions were studied as a function of growth in cutaneous pectoris muscles of postmetamorphic Rana pipiens. Recently metamorphosed frogs grew rapidly, and this growth was accompanied by hypertrophy of muscle fibers, myogenesis, and increases in the size and complexity of neuromuscular junctions. There were pronounced gradients in pre- and postsynaptic size across the width of the muscle, with neuromuscular junctions and muscle fibers near the medial edge being smaller than in more lateral regions. The incidence of polyneuronal innervation, measured physiologically and histologically, was also higher near the medial edge. Growth-associated declines in all measures of polyneuronal innervation indicated that synapse elimination occurs throughout life. Electrophysiology also demonstrated regional differences in synaptic efficacy and showed that doubly innervated junctions have lower synaptic efficacy than singly innervated junctions. Repeated, in vivo observations revealed extensive growth and remodelling of motor nerve terminals and confirmed that synapse elimination is a slow process. It was concluded that some processes normally associated with embryonic development persist long into adulthood in frog muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号