首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (2) was coupled to the 5' terminus of oligodeoxynucleotides via hydrogen phosphonate solid support DNA synthesis methodology. Duplex DNA oligomers with a single 5'-phospholipid melted at lower temperatures than the corresponding unmodified duplex, but duplexes bearing lipids at each 5' end had higher Tms. In uptake experiments with L929 cells, 8-10 times more lipid-DNA became cell-associated than did unmodified DNA. Unmodified antisense diesters were inactive in a VSV antiviral assay in L929 cells (at up to 200 microM). Attachment of a lipid to the oligomer, however, led to a greater than 90% at 150 microM (greater than 80% at 100 microM) reduction in viral protein synthesis. The antiviral activity depended on the sequence of the oligodeoxynucleotide, but some compounds having little or no base complementarity to the viral target were also effective. Phosphorothioate derivatives reduced viral protein synthesis by 20-30% at 100 microM in the VSV assay. The lipid-DNA compounds were not toxic to the cells at up to 100 microM.  相似文献   

2.
Oligodeoxyribonucleotides complementary to the DNA of the wild type (wt) bacteriophage phi chi 174 have been synthesized by the phosphotriester method. The oligomers, 11, 14, and 17 bases long, are complementary to the region of the DNA which accounts for the am-3 point mutation. When hybridized to am-3 DNA, the oligonucleotides form duplexes with a single base pair mismatch. The thermal stability of the duplexes formed between wt and am-3 DNAs has been measured. The am-3 DNA:oligomer duplexes dissociate at a temperature about 10 degrees C lower than the corresponding wt DNA:oligomer duplexes. This dramatic decrease in thermal stability due to a single mismatch makes it possible to eliminate the formation of the mismatched duplexes by the appropriate choice of hybridization temperature. These results are discussed with respect to the use of oligonucleotides as probes for the isolation of specific cloned DNA sequences.  相似文献   

3.
An efficient synthesis of the novel nucleic acid analogs oligodeoxyribonucleotide N3'-->P5' phosphoramidates, where the 3'-oxygen is substituted by a 3'-nitrogen, is described. Synthesis of the title compounds was accomplished by the following synthetic steps. First, 5'-O-DMT base-protected-3'-amino-2',3'-dideoxynucleosides were prepared. The 3'-aminopyrimidines were obtained via the corresponding 2,3'-anhydronucleosides, whereas 3'-aminopurines were derived via 2'-deoxyxylo precursors. Second, using the prepared 3'-aminonucleosides, oligonucleotide N3'-->P5' phosphoramidates were synthesized on a solid support. Oligonucleotide chain assembly was based upon a carbon tetrachloride-driven oxidative coupling of the appropriately protected 3'-aminonucleosides with the 5'-H-phosphonate diester group, resulting in the formation of an internucleoside phosphoramidate link. Fully deprotected oligonucleotide N3'-->P5' phosphoramidates were characterized by ion exchange and reversed phase HPLC, capillary and slab gel electrophoresis and by 31P NMR analysis. Oligonucleotide N3'-->P5' phosphoramidates form remarkably stable duplexes with complementary RNA strands and also with themselves, where the melting temperature of the complexes exceeded that for the parent phosphodiester compounds by 26-33 degrees C. Additionally, duplexes formed by oligonucleotide phosphoramidates with single-stranded DNA were also more thermally stable than those formed by phosphodiesters. The described properties indicate that these compounds may have great potential in oligonucleotide-based diagnostics and therapeutic applications.  相似文献   

4.
S B Lin  K R Blake  P S Miller  P O Ts'o 《Biochemistry》1989,28(3):1054-1061
EDTA-derivatized oligonucleoside methylphosphonates were prepared and used to characterize hybridization between the oligomers and single-stranded DNA or RNA. The melting temperatures of duplexes formed between an oligodeoxyribonucleotide 35-mer and complementary methylphosphonate 12-mers were 4-12 degrees C higher than those of duplexes formed by oligodeoxyribonucleotide 12-mers as determined by spectrophotometric measurements. Derivatization of the methylphosphonate oligomers with EDTA reduced the melting temperature by 5 degrees C. Methylphosphonate oligomer-nucleic acid complexes were stabilized by base stacking interactions between the terminal bases of the two oligomers binding to adjacent binding sites on the target. In the presence of Fe2+ and DTT, the EDTA-derivatized oligomers produce hydroxyl radicals that cause degradation of the sugar-phosphate backbone of both targeted DNA and RNA. Degradation occurs specifically in the region of the oligomer binding site and is approximately 20-fold more efficient for single-stranded DNA than for RNA. In comparison to the presence of one oligomer, the extent of target degradation was increased considerably by additions of two oligomers that bind at adjacent sites on the target. For example, the extent of degradation of a single-stranded DNA 35-mer caused by two contiguously binding oligomers, one of which was derivatized by EDTA, was approximately 2 times greater than that caused by the EDTA-derivatized oligomer alone. Although EDTA-derivatized oligomers are stable for long periods of time in aqueous solution, they undergo rapid autodegradation in the presence of Fe2+ and DTT with half-lives of approximately 30 min. This autodegradation reaction renders the EDTA-derivatized oligomers unable to cause degradation of their complementary target nucleic acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Convenient approaches were described to incorporate -OP(=O)O(-)-SS-O(-)(O=)PO- bridges in hairpin-shaped DNA duplexes instead of regular phosphodiester linkages: (i) H2O2- or 2,2'-dipyridyldisulfide-mediated coupling of 3'- and 5'-thiophosphorylated oligonucleotides on complementary template and (ii) more selective template-guided autoligation of a preactivated oligonucleotide derivative with an oligomer carrying a terminal thiophosphoryl group. Dithiothreitol was found to cleave completely modified internucleotide linkage releasing starting oligonucleotides. The presence of complementary template as an intrinsic element of the molecule protects the hairpin DNA analog from spontaneous exchange of disulfide-linked oligomer fragments and makes it a good candidate for auto-crosslinking with cysteine-containing proteins.  相似文献   

6.
Recognition of E coli tRNAArg by arginyl tRNA synthetase.   总被引:1,自引:1,他引:0       下载免费PDF全文
Escherichia coli tRNAArg was digested with ribonuclease T1 under restrictive conditions in order to dissect a minimum number of diester bonds. The number of diester bonds cleaved and their locations were determined by phosphorylation of the newly formed 5' hydroxyl groups with [32P] ATP and polynucleotide kinase. There was complete loss of aminoacylation of tRNAARg when two diester bonds were cleaved at the anticodon. However, this material retained the specific properties of synthetase recognition. Two fragments were derived by further digestion of this tRNA. One 19 nucleotide-long fragment derived from the 3' end of tRNAArg and another 18 nucleotide-long fragment derived from the 5' end of the molecule were required to maintain the properties of the specific recognition by the arginyl tRNA synthetase in the absence of the rest of the structure including the anticodon.  相似文献   

7.
A sequence of the rabbit alpha-globin mRNA is the primary target for ODN1, an unmodified 15-nucleotide (nt) antisense oligodeoxyribonucleotide (oligo). ODN1 prevented in vitro translation of both alpha- and beta-globin mRNAs in wheat germ extract. Nine secondary sites exhibiting more than 60% complementarity with ODN1 were present in the beta-globin message. The ODN1 inhibition of beta-globin synthesis was shown to be mediated by RNase H cleavage of the beta-globin mRNA at three partially complementary sites. Sandwich-type oligos consisting of a stretch of unmodified nt with a few methylphosphonate residues at both 5' and 3' ends were derived from ODN1. We have demonstrated that one such analogue (ODN2), with five phosphodiester linkages in the central region, exhibited improved specificity for alpha-globin mRNA compared with the unmodified parent 15-mer, due to a reduced ability of RNase H to cleave beta-mRNA/ODN2 mismatched duplexes.  相似文献   

8.
A series of artificial peptides bearing cationic functional groups with different side chain lengths were designed, and their ability to increase the thermal stability of nucleic acid duplexes was investigated. The peptides with amino groups selectively increased the stability of RNA/RNA duplexes, and a relationship between the side chain length and the melting temperature (Tm) of the peptide–RNA complexes was observed. On the other hand, while peptides with guanidino groups exhibited a similar tendency with respect to the peptide structure and thermal stability of RNA/RNA duplexes, those with longer side chain lengths, such as l-2-amino-4-guanidinobutyric acid (Agb) or l-arginine (Arg) oligomers, stabilized both RNA/RNA and DNA/DNA duplexes, and those with shorter side chain lengths exhibited a higher ability to selectively stabilize RNA/RNA duplexes. In addition, peptides were designed with different levels of flexibility by introducing glycine (Gly) residues into the l-2-amino-3-guanidinopropionic acid (Agp) oligomers. It was found that insertion of Gly did not affect the thermal stability of the peptide–RNA complexes, but an alternate arrangement of Gly and Agp apparently decreased the thermal stability. Therefore, in the Agp oligomer, consecutive Agp sequences are essential for increasing the stability of RNA/RNA duplexes.  相似文献   

9.
Berberine, an isoquinoline plant alkaloid, belongs to the structural class of protoberberines. Recently, the ability of these compounds to act as Topoisomerase I or II poisons, was related to the antitumor activity. The binding of protoberberins to DNA has been studied and the partial intercalation into the double helix has been considered responsible for their activity. We have studied the interaction of berberine with the double helix oligonucleotides d(AAGAATTCTT)(2), d(GCGATCGC)(2), d(CGTATACG)(2), d(CGTACG)(2), 5'-d(ACCTTTTTGATGT)-3'/5(ACATCAAAAAGGT)-3' and with the single strand 5'-d(ACATCAAAAAGGT)-3', by 1H, 31P NMR and UV spectroscopy. Phosphorus resonance experiments were performed to detect small conformational changes of the phosphoribose backbone, in the case that an intercalation process occurs. Our data reveal that berberine does not intercalate into the duplexes studied, and binds preferentially to AT rich sequences. The structure of the complex with d(AAGAATTCTT)(2) was determined by using proton 2D NOESY spectra, which allowed to obtain several NOE contacts between the drug and the nucleotide. Structural models were built up by Molecular Mechanics (MM) and Molecular Dynamics (MD) calculations, by using the inter-proton distances derived from the NOE values. Berberine results to be located in the minor groove, lying with the convex side on the helix groove and presenting the positively charged nitrogen atom close to the negative ionic surface of the oligomer. The large 1H chemical shifts variation, observed for the drug when it is added to the above duplexes, as well as to the single strand oligomer, was interpreted with non-specific ionic interactions. The binding constants were measured by UV and NMR spectroscopy. They are strongly affected by the ionic strength and by the self-association process, which commonly occurs with this type of drugs. A dimerisation constant was measured and the value was included in the calculations of the binding constants. The results obtained show that the non-specific ionic interactions represent the major contribution to the values of the binding constants. These parameters, as well as the protons chemical shift variation of the ligand, are thus not diagnostic for the identification of a drug/DNA complex.  相似文献   

10.
The synapsis of DNA sites is a prerequisite for the reactions of many proteins that act at specific DNA sequences. The requirement for synapsis was investigated by analysing the reactions of Sfi I, a tetrameric restriction enzyme that cleaves DNA only after interacting with two recognition sites. In the presence of Mg2+, oligonucleotide duplexes with the cognate recognition sequence were cleaved rapidly, with cooperative kinetics, while non-cognate duplexes were not cleaved. In the absence of Mg2+, the primary complex formed by Sfi I with cognate DNA contained two duplexes synapsed by the tetramer: a secondary complex containing one duplex was seen only at elevated Sfi I concentrations. In contrast, the principal complex with non-cognate DNA contained one duplex bound to Sfi I. Pairs of non-cognate duplexes, or one cognate and one non-cognate duplex, generally failed to form synaptic complexes. On adding Mg2+to complexes with cognate DNA, cleavage occurred much more rapidly in the synaptic complex than in the secondary complex. DNA synapsis thus acts to enhance the specificity of Sfi I for its recognition sequence, by demanding two cognate sites for a catalytically active complex and by excluding non-cognate sites from the synaptic complex.  相似文献   

11.
12.
13.
5-Carboxy-2'-deoxycytidine (dC(COO-)) was synthesized as an anion-carrier to seek a new possibility of modified oligodeoxynucleotides capable of stabilization of duplexes and triplexes. The base pairing properties of this compound were evaluated by use of ab initio calculations. These calculations suggest that the Hoogsteen-type base pair of dC(COO-)-G is less stable than that of the canonical C+-G pair and the Watson-Crick-type base pair of dC(COO-)-G is slightly more stable than the natural G-C base pair. The modified cytosine base showed a basicity similar to that of cytosine (pKa 4.2). It turned out that oligodeoxynucleotides 13mer and 14mer incorporating dC(COO-) could form duplexes with the complementary DNA oligomer, which were more stable than the unmodified duplex. In contrast, it formed a relatively unstable triplex with the target ds DNA.  相似文献   

14.
Uniformly modified oligodeoxyribonucleotide N3'-->P5' phosphoramidates containing 2'-fluoro-2'-deoxy-pyrimidine nucleosides were synthesized using an efficient interphase amidite transfer reaction. The 3'-amino group of solid phase-supported 2'-fluoro-2'-deoxynucleoside was used as an acceptor and 5'-diisopropylamino phosphoramidite as a donor of a phosphoramidite group in the tetrazole-catalyzed exchange reaction. Subsequent oxidation with aqueous iodine resulted in formation of an internucleoside phosphoramidate diester. The prepared oligo-2'-fluoro-nucleotide N3'-->P5' phosphoramidates form extremely stable duplexes with complementary nucleic acids: relative to isosequential phosphodiester oligomers, the melting temperature Tm of their duplexes with DNA or RNA was increased approximately 4 or 5 degrees C per modification respectively. Moreover, these compounds are highly resistant to enzymatic hydrolysis by snake venom phosphodiesterase and they are 4-5 times more stable in acidic media (pH 2.2-5.3) than the parent oligo-2'-deoxynucleotide N3'-->P5' phosphoramidates. The described properties of the oligo-2'-fluoronucleotide N3'-->P5' phosphoramidates suggest that they may have good potential for diagnostic and antisense therapeutic applications.  相似文献   

15.
Badhwar J  Karri S  Cass CK  Wunderlich EL  Znosko BM 《Biochemistry》2007,46(50):14715-14724
Thermodynamic data for RNA 1 x 2 nucleotide internal loops are lacking. Thermodynamic data that are available for 1 x 2 loops, however, are for loops that rarely occur in nature. In order to identify the most frequently occurring 1 x 2 nucleotide internal loops, a database of 955 RNA secondary structures was compiled and searched. Twenty-four RNA duplexes containing the most common 1 x 2 nucleotide loops were optically melted, and the thermodynamic parameters DeltaH degrees , DeltaS degrees , DeltaG degrees 37, and TM for each duplex were determined. This data set more than doubles the number of 1 x 2 nucleotide loops previously studied. A table of experimental free energy contributions for frequently occurring 1 x 2 nucleotide loops (as opposed to a predictive model) is likely to result in better prediction of RNA secondary structure from sequence. In order to improve free energy calculations for duplexes containing 1 x 2 nucleotide loops that do not have experimental free energy contributions, the data collected here were combined with data from 21 previously studied 1 x 2 loops. Using linear regression, the entire dataset was used to derive nearest neighbor parameters that can be used to predict the thermodynamics of previously unmeasured 1 x 2 nucleotide loops. The DeltaG degrees 37,loop and DeltaH degrees loop nearest neighbor parameters derived here were compared to values that were published previously for 1 x 2 nucleotide loops but were derived from either a significantly smaller dataset of 1 x 2 nucleotide loops or from internal loops of various sizes [Lu, Z. J., Turner, D. H., and Mathews, D. H. (2006) Nucleic Acids Res. 34, 4912-4924]. Most of these values were found to be within experimental error, suggesting that previous approximations and assumptions associated with the derivation of those nearest neighbor parameters were valid. DeltaS degrees loop nearest neighbor parameters are also reported for 1 x 2 nucleotide loops. Both the experimental thermodynamics and the nearest neighbor parameters reported here can be used to improve secondary structure prediction from sequence.  相似文献   

16.
The first method for solid support synthesis of all-Rp-oligo(ribonucleoside phosphorothioate)s is presented as well as attempts to increase the stereoselectivity of the key step in this approach. The synthetic strategy consists of (i) a solid support synthesis procedure, using 5'-O-(4-methoxytriphenylmethyl)-2'-O-tert-butyldimethylsilyl-ri bon ucleoside 3'-H- phosphonates, that due to stereoselectivity in the condensation step, gives oligomers with mostly Sp-H-phosphonate diesters (72-89% under standard conditions), (ii) stereospecific sulfurization with S8 in pyridine to produce oligo(ribonucleoside phosphorothioate)s enriched with internucleosidic linkages of Rp configuration, (iii) treatment of the deprotected oligonucleotides with the enzyme Nuclease P1 from Penicillium citrinum, that specifically catalyses cleavage of Sp-phosphorothioate diester linkages, which leaves a mixture of oligomers having all internucleosidic linkages as Rp-phosphorothioates, and finally (iv) isolation and HPLC purification of the full length all-Rp oligomer. Mixed sequences containing the four common nucleosidic residues up to the chain length of a heptamer were synthesized. Change of N-4-protection on the cytidine building block from propionyl to N-methylpyrrolidin-2-ylidene gave a slightly improved diastereoselectivity in H-phosphonate diester formation. Increased selectivity up to 99+% was obtained with the guanosine building block when the amount of pyridine in the coupling step was reduced.  相似文献   

17.
Selective hydrolysis of the 3′-O-acetyl groups in the 5′-P-cyanoethyl-blocked deoxyribonucleotides, commonly used in oligomer synthesis by the diester method, can be achieved by mild hydrolysis with aqueous ammonia in pyridine for a brief period of time. The 3′-O-isobutyryl group is much more resistant. Conditions for 3′-unblocking of the four commonly used protected monomers as well as a model oligomer, d(CNEtpbzA-ibuG)Ac, are described.  相似文献   

18.
A single deoxycytidine residing in an oligodeoxyribonucleotide which also contains 5-methyldeoxycytidines can be selectively derivatized with various alkylamines by sodium bisulfite-catalyzed transamination. Selective transamination results because 5-methylcytosine, unlike cytosine, does not form a bisulfite adduct. When the reaction is carried out at pH 7.1, transamination in the oligomer appears to occur to greater than 95% with little or no deamination. This procedure has been used to introduce aminoalkyl or carboxyalkyl side chains at the N4-position of a deoxycytidine in oligonucleotides. These side chains contain potentially reactive amine or carboxy groups which could serve as a sites for further conjugation of the oligomer with a variety functional groups. Oligonucleotides which carry these side chain form duplexes and triplexes with appropriate complementary single-stranded or double-stranded oligodeoxyribonucleotide target molecules. The stabilities of the duplexes are similar to those formed by unmodified oligomers, whereas the stability of the triplexes is approximately 18 degrees C lower than that formed by unmodified oligomers.  相似文献   

19.
Effective methods of the directed introduction of diphosphoryl disulfide bridges into hairpin DNA duplexes in place of natural phosphodiester groups were developed using the H2O2-effected ligation of 3'- and 5'-thiophosphorylated oligonucleotides or the autoligation of a preactivated oligonucleotide derivative with a phosphorothioate-bearing oligomer. The postsynthetic recombination of the disulfide-linked oligonucleotide fragments was characterized. It was shown that, along with template-directed reactions, out-of-duplex formation and exchange of diphosphoryl disulfide bonds in the DNA sugar-phosphate backbone may occur. In modified hairpin DNA, a spontaneous exchange of disulfide-linked fragments virtually does not take place because of the intramolecular duplex formation.  相似文献   

20.
A survey was compiled of several characteristics of the intersubunit contacts in 58 oligomeric proteins, and of the intermolecular contacts in the lattice for 223 protein crystal structures. The total number of atoms in contact and the secondary structure elements involved are similar in the two types of interfaces. Crystal contact patches are frequently smaller than patches involved in oligomer interfaces. Crystal contacts result from more numerous interactions by polar residues, compared with a tendency toward nonpolar amino acids at oligomer interfaces. Arginine is the only amino acid prominent in both types of interfaces. Potentials of mean force for residue–residue contacts at both crystal and oligomer interfaces were derived from comparison of the number of observed residue–residue interactions with the number expected by mass action. They show that hydrophobic interactions at oligomer interfaces favor aromatic amino acids and methionine over aliphatic amino acids; and that crystal contacts form in such a way as to avoid inclusion of hydrophobic interactions. They also suggest that complex salt bridges with certain amino acid compositions might be important in oligomer formation. For a protein that is recalcitrant to crystallization, substitution of lysine residues with arginine or glutamine is a recommended strategy. Proteins 28:494–514, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号