首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anatomy of each of the series of floral organs of Krameria lanceolata was examined. The sepals are characterized by three main veins each, an undifferentiated mesophyll, and stomata on the upper epidermis. The fleshy petals are distinguished by their numerous veins as well as by palisade-like epidermal cells on the outer surface. The three partially united petals have each a single vein and long, narrow epidermal cells similar to those on other floral organs. The stamens are united at their bases and bear tetra-sporangiate, conical anthers. The gynoecium includes a sterile and a fertile carpel. In the receptacle the veins to the sepals and petals are separated by a wide gap; those to the petals and stamens, by a narrow gap. Anatomical characteristics of the flower dissociate Krameriaceae from the legumes with which they have frequently been thought to be allied.  相似文献   

2.
The anatomy of leaves and inflorescence peduncles was studied in species of Monotrema (4), Stegolepis (1) and Saxofridericia (1), aiming to contribute to the taxonomy of Rapateaceae. The form and structure of leaf blade midrib and the form of the inflorescence peduncle are diagnostic characteristics for the studied species. Monotrema is distinguished by: epidermal and vascular bundle outer sheath cells containing phenolic compounds in both organs; leaf blade with palisade and spongy chlorenchyma, arm-parenchyma, and air canals between the vascular bundles; leaf sheath with phenolic idioblasts in the mesophyll; inflorescence peduncle with tabular epidermal cells and air canals in the cortex and pith. Such characteristics support the recognition of Monotremoideae, which includes Monotrema. Stegolepis guianensis is distinguished by thick-walled epidermal cells and a plicate chlorenchyma in both organs; leaf blade with subepidermal fiber strands in abaxial surface and a heterogeneous mesophyll; inflorescence peduncle with rounded epidermal cells, a hypodermis with slightly thick-walled cells, and a pith with isodiametric cells and vascular bundles. Saxofridericia aculeata is distinguished by papillate epidermal cells in both organs; unifacial leaf blade with subepidermal fiber strands in both surfaces and a regular chlorenchyma; leaf sheath with a hypodermis in both surfaces and fiber bundles in the mesophyll; inflorescence peduncle with an undefined cortex and a hypodermis with thick-walled cells. S. guianensis shares few characteristics with S. aculeata, supporting their placement in different tribes.  相似文献   

3.
Flower and inflorescence anatomy and morphology of Exostyles, Harleyodendron, Holocalyx, Lecointea, and Zollernia (Leguminosae, Lecointea clade) were studied. Features common to all genera but otherwise rare within the Leguminosae include: (1) the presence of phenolic compounds in the epidermal cells of the anthers and subepidermal cells of the bracteoles, sepals, petals, and ovaries (absent in Holocalyx balansae); (2) simple trichomes on the adaxial base of the bracteoles and on the surface of the calyx and ovaries; and (3) tapetum persisting until the androspores are formed. Other notable anatomical features are: (1) colleters on the adaxial bases of the bracts and bracteoles of Holocalyx balansae and Zollernia ilicifolia; (2) trichomes on the anthers of Harleyodendron unifoliolatum, Holocalyx balansae, Lecointea hatschbachii, Zollernia ilicifolia and Z. magnifica; (3) osmophores on the petals of Exostyles godoyensis; (4) asynchronous pollen development in the anthers of Holocalyx balansae and Zollernia magnifica; and (5) vascular bundles surrounded by lignified fibers in Harleyodendron unifoliolatum. These anatomical characters are discussed according to their possible phylogenetic implications.  相似文献   

4.
Rhynchospora is one of the most species-rich genera of Cyperaceae and one of the few with entomophilous species. Considering the few anatomical studies of the genus, especially of the reproductive structures, this study comparatively analysed the anatomy of flowers of two representative species of Rhynchospora, R. consanguinea and R. pubera, including the floral vasculature and the anatomy of the style base, which is persistent with the fruit. Both species have congested inflorescences with light-coloured bracts and bisexual flowers, and phenolic idioblasts in the anthers and gynoecium, characteristics that suggest insect pollination. In R. consanguinea, the bisexual and the most proximal male flower has perianths, a new character state reported for the genus. The floral vasculature pattern is similar in both species, but differs from that previously described for Rhynchospora. In both species, there are two vascular bundles in the rachilla, which split into three receptacular bundles, the latter forming a vascular plexus where the bundles of stamens, gynoecium and ovule are connected. No lateral carpellary trace was observed, and the presence of the abaxial receptacular bundle was interpreted as a vestige of the tricarpellate ancestral condition. In the fruit of both species, the thickened style base (stylopodium) has a parenchyma with idioblasts containing phenolic compounds and idioblasts with helical or reticulate cell wall thickenings. The stylopodium is a homologous structure in the species of Rhynchospora and to other genera of Cyperoideae and evolved several times in the subfamily.  相似文献   

5.
6.
Twenty plants with various phenotypic abnormalities to the flowerswere selected from very large populations of Thryptomene calycinain the Grampian and Black Ranges. Most of these had impairedreproductive function. Normal flowers were epigynous with fivesepals, five petals, five anthers, a single style and two anatropousovules. The mutants were two partially male sterile, tetraploidplants with large flowers, one of which occasionally producedadditional flowers from the leaf axils with peduncles as wellas pedicels; one plant which produced a proportion of hexapetaloidflowers with six stamens; three gross mutants with fleshy, bracteoidpointed petals and sepals, no stamens, vestigial styles andstigmas, exposed ovules and no inferior ovary; one plant withfleshly, bracteoid pointed sepals, vestigial style and stigmabut with exposed ovular structures replaced by four to fivesterile ovules generally inside an abnormal ovary; two plantswith reduced ovary diameter and sterile ovules, shortened style,five reduced sepals and petals and five to eight anthers; threeanthocyanin-free plants; three plants with pink sepals; twoplants with half-sized flowers which produced a proportion offasciated stems; one plant which occasionally produced flowerswithout pedicels which virtually resulted in organs which wereleaf-flower composites; two plants which produced sepals andpetals which contained chlorophyll and prematurely senesced,and had partial substitution of petals by anthers.Copyright1993, 1999 Academic Press Thryptomene calycina, Myrtaceae, Victorian lace flower, floral mutations, mutants, homeotic, meristic, tetraploid, fasciation, male sterility, cut flowers  相似文献   

7.
Despite progress in clarifying the relationships of Dasypogonaceae (four genera, Baxteria, Calectasia, Dasypogon, and Kingia), their infrafamilial relationships and precise affinities within the commelinid clade remain unsatisfactorily resolved. This paper reviews existing data on the systematic affinities of Dasypogonaceae. It also presents new data on floral structure in all four genera, and data on floral ontogeny in Dasypogon. In Dasypogon, Kingia, and Baxteria the ovary is trilocular and septal nectaries are present around the ovary base. In Calectasia, the ovary is unilocular and septal nectaries are entirely absent. Two subfamilial groupings within Dasypogonaceae (CalectasiaDasypogon and BaxteriaKingia) are proposed on the basis of leaf anatomy and ovule and ovary morphology. Many floral characters are plesiomorphic in Dasypogonaceae, but some morphological characters support a close relationship with the order Poales sensu lato, especially the epidermal location of the silica bodies. The unusual long-stalked “drumstick” inflorescences of Dasypogon and Kingia resemble those of some Poales, in which flowers are frequently borne on condensed inflorescences. A possible close relationship between Dasypogonaceae and some Poales such as Rapateaceae and Thurniaceae merits further exploration.  相似文献   

8.
Chrysobalanaceae s.l. , one of the few suprafamilial subclades of Malpighiales that is supported by molecular phylogenetic analyses, and containing Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, and Trigoniaceae, was comparatively studied with regard to floral structure. The subclade is well supported by floral structure. Potential synapomorphies for Chrysobalanaceae s.l. are the following shared features: floral cup; flowers obliquely monosymmetric; sepals congenitally united at base; sepals of unequal size (outer two shorter); fertile stamens concentrated on the anterior side of the flower and sometimes united into a strap; staminodes absent in the posteriormost antepetalous position; anthers extremely introrse, with thecae almost in one plane; endothecium continuous over the dorsal side of the connective; dorsal anther pit; gynoecium completely syncarpous up to the stigma; carpel flanks slightly bulged out transversely and thus carpels demarcated from each other by a longitudinal furrow; flowers with dense unicellular, non-lignified hairs, especially on the gynoecium; light-coloured, dense indumentum on young shoots and inflorescences. Potential synapomorphies for Chrysobalanaceae + Euphroniaceae include: spur in floral cup; clawed petals; lignified hairs on petals; nectary without lobes or scales and mostly annular. Potential synapomorphies for Dichapetalaceae + Trigoniaceae include: special mucilage cells in sepals in mesophyll (in addition to epidermis); anthers almost basifixed; gynoecium synascidiate up to lower style; nectary with lobes or scales and semi-annular.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 249–309.  相似文献   

9.
Ochnaceae s.l. (Ochnaceae, Quiinaceae and Medusagynaceae), one of the well‐supported subclades of the large order Malpighiales retrieved so far in molecular phylogenetic studies, were comparatively studied with regard to floral structure using microtome section series and scanning electron microscopy (SEM). Floral morphology, anatomy and histology also strongly reflect this close relationship. Potential synapomorphies of the subclade include: flowers nectarless, sepals of different sizes within a flower, petals not retarded in development and forming the protective organs of advanced floral buds, petal aestivation contort, petals with three vascular traces, petals reflexed over the sepals and directed toward the pedicel, polystemony, anthers almost or completely basifixed, gynoecium often with more than five carpels, short gynophore present, styles separate for at least their uppermost part and radiating outwards, suction‐cup‐shaped stigmas, vasculature forming a dorsal band of bundles in the upper stylar region, gynoecium epidermis with large, radially elongate cells, ovules either weakly crassinucellar or incompletely tenuinucellar with an endothelium, abundance of tanniferous tissues and sclerenchyma in floral organs. The most strongly supported subclade of two of the three families in molecular analyses, Quiinaceae and Medusagynaceae, is also particularly well supported by floral structural features, including the presence of functionally and morphologically unisexual flowers, a massive thecal septum that persists after anther dehiscence, styles radiating outward from the ovary, two lateral ovules per carpel, positioned one above the other, conspicuous longitudinal ribs on the ovary wall at anthesis, and a ‘false endothelium’ on the nucellus at anthesis. Additionally, the group fits well in Malpighiales and further emphasizes the relationship of Malpighiales with Celastrales and Oxalidales, and thus the unity of the COM clade. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 299–392.  相似文献   

10.
A comparative study of floral ontogeny and development was carried out on three genera (Marrubium L., Phlomis L., Stachys L.), representing three tribes of Lamioideae (Marrubieae, Phlomideae, Stachydeae) using epi-illumination light microscopy. The sequence of organ whorl appearance in all three genera is sepals, petals plus stamens, and carpels. Sepal appearance is reversed unidirectional starting from the adaxial side in all except Phlomis, which is unidirectional. Order of petal appearance is bidirectional in Marrubium and Stachys, and simultaneous in Phlomis. Stamens appear unidirectionally starting from the adaxial side in all except in Phlomis, which has an abaxial to adaxial unidirectional sequence. Significant developmental features distinguishing the three genera from each other include (1) weakly monosymmetric, elongated calyx tube, five-lobed corolla, divergent anthers with thecae transverse to the filament, unequally bifid stigma and ovary with glandular hairs in Marrubium; (2) actinomorphic hairy calyx, four-lobed corolla and unequally bifid stigma in Phlomis; and (3) glabrous calyx, equally bifid stigma and symmetric disc nectary in Stachys. Our results indicate some potential for floral ontogenetic features in delimiting the different tribes. The hypothetical evolutionary pathway of organogenesis sequences is discussed.  相似文献   

11.

Background and Aims

This study is an investigation into the floral development and anatomy of two genera of the small family Salvadoraceae, which belongs to the Brassicales in a clade with Batis and Koeberlinia. Salvadoraceae remains little known, despite its wide distribution in arid areas of the globe. Floral morphological data are scarce, and information on floral anatomy is limited to a single study, although morphological and anatomical characters are now used increasingly as a counterpart of molecular data. There remain a number of controversial morphological questions, such as the fusion of the petals, the number of carpels and the nature of the nectaries.

Methods

Floral anatomy and ontogeny were studied in two species of Salvadora and one species of Dobera. Only for S. persica could a full floral developmental sequence be done.

Key Results

The floral development demonstrates that the ovary of Salvadoraceae is basically bicarpellate and pseudomonomerous with a single locule and parietal placenta. The ovary of Dobera resembles Azima tetracantha in the presence of a false apical septum. Evidence for a staminodial nature of the nectaries is not decisive. In Salvadora petals and stamens are lifted by a short hypanthium.

Conclusions

Salvadoraceae share several morphological and developmental synapomorphies with Batis (Bataceae) and possibly Koeberlinia (Koeberliniaceae), supporting their close relationship as indicated by molecular phylogeny.Key words: Batis, Brassicales, Dobera, Emblingia, floral development, floral anatomy, Koeberlinia, phylogeny, Salvadora, Salvadoraceae, SEM  相似文献   

12.
The flowers of mangrove Rhizophoraceae (tribe Rhizophoreae) are adapted to three different pollination mechanisms. Floral development of representative species of all four genera suggests that the ancestral flower of the tribe was unspecialized, with successively initiated whorls of separate sepals, petals, antisepalous stamens, and antipetalous stamens; at its inception, the gynoecium had a united, half-inferior ovary and separate stigmatic lobes. This developmental pattern is found in Rhizophora mangle (wind-pollinated) and Ceriops decandra (insect-pollinated). In Kandelia, all floral organs distal to the sepals are initiated simultaneously, and there has apparently been an evolutionary amplification in the number of stamens to about six times the number of petals. Explosive pollen release evolved independently in C. tagal and in Bruguiera. In the former, all stamens belong to one whorl and arise simultaneously upon a very weakly differentiated androecial ring primordium. In Bruguiera, the androecial ring is pronounced, and two whorls of stamens arise upon it; the primordia of the antisepalous whorl arise first but are closer to the center of the apex than the antipetalous stamen primordia. The antisepalous stamens bend toward and are enclosed by the petals early in development. In all genera, the inferior ovary develops by zonal growth of receptacular tissue; additional intercalary growth above the placenta occurs in Bruguiera. In general, floral specialization is accompanied by an increase in the width of the floral apex compared to the size of the primordia, increasing fusion of the stylar primordia, and decreasing prominence of the superior portion of the ovary. Apparent specializations of petal appendages for water storage, including the presence of sub-terminal hydathodes (previously unreported in any angiosperm), were found in two species in which flowers remain open during the day but were absent from two species normally pollinated at night or at dawn. Distinctive tribal characteristics that may aid in phylogenetic analysis include the mode of development of the inferior ovary; the aristate, bifid, usually fringed petals that individually enclose one or more stamens; the intrastaminal floral disc; and the initially subepidermal laticiferous cell layer in the sepals and ovary.  相似文献   

13.
14.
Floral ontogeny and morphology of the Leguminosae are of interest because of their potential to provide characteristics useful for phylogeny. To determine if these features corroborate the phylogenetic segregation of the section Ochopodium from Aeschynomene, this study used comparative analysis between Aeschynomene falcata and A. sensitiva, which are within the sections Ochopodium and Aeschynomene, respectively. Flower buds were analysed by use of scanning electron microscopy. Aeschynomene falcata has a unidirectional initiation of sepals from the abaxial side, and a tendency toward whorled initiation for petals and stamens. At maturity, it has a calyx tube with five lobes, a pubescent standard petal, keel petals with coherent (but not fused) margins above and below the stamens, and a carpel with a long hairy stipe. Aeschynomene sensitiva has a distinct initiation pattern of petals (1st abaxial, 2nd adaxial, and 3rd lateral) and a tendency toward whorled initiation of sepals and stamens. Overlap between sepals, petals, and antesepalous stamens initiation was observed. At maturity, A. sensitiva has a glabrous bilobed calyx and a glabrous standard petal, keel petals postgenitally fused above the stamens, and a carpel with a short and glabrous stipe. Floral ontogeny and morphology of A. falcata are very similar to those of Machaerium and Dalbergia species so far studied, corroborating the phylogenetic proximity of section Ochopodium to these genera. Important features of the floral ontogeny of A. sensitiva seem to be related to the origin of the bilobed calyx, which is shared with the rest of Aeschynomeninae except section Ochopodium, suggesting they are synapomorphies for those species.  相似文献   

15.
The initiation and development of the floral organs of Brassica napus L. (cv. Westar) were examined using the scanning electron microscope. After transition of the vegetative apex into an inflorescence apex, flower primordia were initiated in a helical phyllotactic pattern. The sequence of initiation of the floral organs in a flower bud was that of sepals, stamens, petals and gynoecium. Of the four sepal primordia, the abaxial was initiated first, followed by the two lateral and finally the adaxial primordium. The four long stamens were initiated simultaneously in positions alternating with the sepals. The two short stamens were initiated basipetal to and outside the long stamens, and opposite the lateral sepals. The petals arose on either side of the two short stamens and the gynoecium was produced from the remainder of the apex. During development, the sepal primordia curved sharply at the tips and tightly enclosed the other organs. Stamen primordia developed tetralobed anthers at an early stage while filament elongation occurred just prior to anthesis. A unique pattern of bulbous cells was present on the abaxial surface of the anther. Growth of petal primordia lagged relative to the other floral organs but expansion was rapid prior to anthesis. The gynoecium primordium was characterized by an invagination early in development. At maturity, there was differentiation of a papillate stigma, an elongated style and a long ovary marked externally by sutures and divided internally by a septum. Distinct patterns of cuticular thickenings were observed on the abaxial and adaxial surfaces of the petals and stamens and on the surface of the style. The patterns were less obvious on the sepals and ovary. Stomata were present on both surfaces of the mature sepals, on the style and restricted areas on the abaxial surface of the anthers and nectaries but were absent from the petals, the adaxial surface of the stamens and the ovary. No hairs were present on any of the floral organs.  相似文献   

16.
Lardizabalaceae, one of seven families of Ranunculales, represent a monophyletic group. The family has functionally unisexual flowers with the organs in trimerous whorls, petaloid sepals and sometimes nectariferous petals. Among Ranunculales, Lardizabalaceae share several floral characters and climbing habit with Menispermaceae, but molecular analyses indicate that Circaeasteraceae and Lardizabalaceae form a strongly supported clade. Morphological and ontogenetic studies of flowers have proved to be a good complement to molecular data in clarifying relationships. Floral organogenesis has been studied in very few species of the family. This study investigates the comparative floral development of three species from three genera (Decaisnea, Akebia and Holboellia) of Lardizabalaceae using scanning electron microscopy. Flowers have a whorled phyllotaxis. Within each whorl, the organs are initiated either simultaneously or in a rapid spiral sequence. In Akebia, six sepals are initiated, but one to three sepals of the second whorl do not further develop. The presence of three sepals in Akebia is thus a developmentally secondary simplification. The petals (if present) are retarded in early developmental stages; stamens and petals are different in shape from the beginning of development. The retarded petals may not be derived from staminodes in Lardizabalaceae. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 171–184.  相似文献   

17.

Background and Aims

Most neotropical Melastomataceae have bee-pollinated flowers with poricidal anthers. However, nectar rewards are known to be produced in about 80 species in eight genera from four different tribes. These nectar-producing species are pollinated by both vertebrates and invertebrates.

Methods

The floral morphology and anatomy of 14 species was studied in six genera of nectar-producing Melastomataceae (Blakea, Brachyotum, Charianthus, Huilaea, Meriania and Miconia). Anatomical methods included scanning electron microscopy, and serial sections of paraffin-embedded flowers.

Key Results

All vertebrate-pollinated melastome flowers have petals that do not open completely at anthesis, thus forming a pseudo-tubular corolla, while closely related species that are bee pollinated have rotate or reflexed corollas. In most species, nectar secretion is related to stomatal or epidermal nectaries and not filament slits as previously reported. Moreover, the nectar is probably supplied by large vascular bundles near the release area. Blakea and Huilaea have nectary stomata located upon the dorsal anther connective appendages. Brachyotum also has nectary stomata on the anther connectives, but these are distributed lengthwise along most of the connective. Meriania may release nectar through the anther connective, but has additional nectary stomata on the inner walls of the hypanthium. Miconia has nectary stomata on the ovary apex. Charianthus nectaries were not found, but there is circumstantial evidence that nectar release occurs through the epidermis at the apex of the ovary and the lower portions of the inner wall of the hypanthium.

Conclusions

Nectar release in Melastomataceae is apparently related to nectary stomata and not filament slits. The presence of nectary stomata on stamens and on ovary apices in different lineages suggests that the acquisition of nectaries is a derived condition. Nectary location also supports a derived condition, because location is strongly consistent within each genus, but differs between genera.Key words: Blakea, Brachyotum, Charianthus, Huilaea, Meriania, Melastomataceae, Miconia, nectaries, nectary stomata, pollination  相似文献   

18.
对大钟花属和黄秦艽属进行了花部解剖学研究,并以此讨论了它们的系统演化关系。大钟花属和黄秦艽属的雌花部分花萼维管束与花冠维管束来源于同一维管束迹,而雄蕊维管束来源于雄蕊迹,每心皮具1条背维管束2条腹维管束,因此,花被维管束为融合型;黄秦艽属的雄花每个花萼、花瓣和雄蕊的维管束均来源于单个维管束迹,每心皮具1条背维管束2条腹维管束,属于基本型。从花部解剖结构看出,大钟花属与假龙胆演化支关系较近;黄秦艽属较獐牙菜属进化。  相似文献   

19.
Floral nectaries are a widespread trait in the Sapindaceae. However, until now only a few data on nectaries and their evolutionary shifts are available for most taxa. This research focuses on the anatomy and development of floral nectaries in two endemic species, Cardiospermum heringeri and C. integerrimum. The nectary consists of two horn-like lobes, located at the base of the androgynophore. Anatomically, it is characterized by three components: uniseriate epidermis, sub-epidermal secretory tissue and vascular tissue. The epidermis contains many nectarostomata involved in the exudation process. The secretory parenchyma is composed of small thin-walled cells, relatively lightly stained, and idioblasts containing oxalate druses. Vascular tissue supplying the nectary consists exclusively of phloem. From an early stage of development, the nectary lobes in both species are associated with the base of the posterior petals, but each organ originates independently of one another. These results plus additional morphological observations of nectary lobes in some species of Cardiospermum, Serjania, Paullinia and Urvillea were analyzed within the framework of phylogenetic knowledge.  相似文献   

20.
DICKISON, W. C., 1993. Floral anatomy of the Styracaceae, including observations on intra-ovarian trichomes All eleven genera of the Styracaceae were examined with respect to floral morphology and anatomy. Floral structure and vascularization are described in detail. Flowers of the family exhibit different degrees and patterns of specialization. All Styracaceae show some degree of basal non-divergence of perianth members, forming a hypanthium that is adnate to the ovary wall to a lesser or greater extent. The extent of reduction and amplification in the number of sepals, petals, stamens, and carpels varies widely among genera, and generally the non-divergence, decrease, or increase in parts is not equally pronounced in the different whorls of the same flower. Genera cannot be readily aligned in an intergrading sequence of morphological advancement. Stamen form and anatomy is variable. A fibrous endothecium ranges from well-developed to weakly formed or absent. A nearly uniform feature of the styracaceous gynoecium is the presence of incompletely septate ovaries. The major points of variation in the floral vascular system relate to the number, mode of origin, and degree of independence of sepallary traces; degree of independence of the androecial vasculature; the level at which the common petal and petalad-stamen or sepal and sepalad-stamen bundles separate to their component parts; organization of the ventral ovarian supply; and the occurrence of ventral bundles in the style. Floral vascularization provides evidence that the family was derived from an obdiplostemonous ancestor. A unitegmic ovule is predominant in the family and starch is present in the megagametophyte of some taxa. An unusual feature of the flowers of the Styracaceae is the occurrence of stellate and lignified intra-ovarian trichomes. Numerous similarities in floral morphology and anatomy between Styracaceae and Ericales are pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号