首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of functional diversity and its dynamics in the environment is essential for understanding the microbial ecology and biogeochemistry of aquatic systems. Here we describe the development and optimization of a DNA microarray method for the detection and quantification of functional genes in the environment and report on their preliminary application to the study of the denitrification gene nirS in the Choptank River-Chesapeake Bay system. Intergenic and intragenic resolution constraints were determined by an oligonucleotide (70-mer) microarray approach. Complete signal separation was achieved when comparing unrelated genes within the nitrogen cycle (amoA, nifH, nirK, and nirS) and detecting different variants of the same gene, nirK, corresponding to organisms with two different physiological modes, ammonia oxidizers and denitrifying halobenzoate degraders. The limits of intragenic resolution were investigated with a microarray containing 64 nirS sequences comprising 14 cultured organisms and 50 clones obtained from the Choptank River in Maryland. The nirS oligonucleotides covered a range of sequence identities from approximately 40 to 100%. The threshold values for specificity were determined to be 87% sequence identity and a target-to-probe perfect match-to-mismatch binding free-energy ratio of 0.56. The lower detection limit was 10 pg of DNA (equivalent to approximately 10(7) copies) per target per microarray. Hybridization patterns on the microarray differed between sediment samples from two stations in the Choptank River, implying important differences in the composition of the denitirifer community along an environmental gradient of salinity, inorganic nitrogen, and dissolved organic carbon. This work establishes a useful set of design constraints (independent of the target gene) for the implementation of functional gene microarrays for environmental applications.  相似文献   

2.
A novel DNA microarray analysis targeting key functional genes involved in most nitrogen cycling reactions was developed to comprehensively analyze microbial populations associated with the nitrogen cycle. The developed microarray contained 876 oligonucleotide probes based on the nucleotide sequences of the nif, amo, hao/hzo, nap, nar, nirK, nirS, nrf, cnor, qnor and nos genes. An analytical method combining detection by the designed microarray with whole community genome amplification was then applied to monitor the nitrogen cycling microorganisms in river water and wastewater treatment sludge samples. The developed method revealed that nitrogen cycling microorganisms in river water appeared to become less diverse in response to input of effluent from municipal wastewater treatment plants. Additionally, the nitrogen cycling community associated with anaerobic ammonium oxidation and partial nitrification reactors could be reasonably analyzed by the developed method. However, the results obtained for two activated sludge samples from municipal wastewater treatment plants with almost equivalent wastewater treatment performance differed greatly from each other. These results suggested that the developed method is useful for comprehensive analysis of nitrogen cycling microorganisms, although its applicability to complex samples with abundant untargeted populations should be further examined.  相似文献   

3.
Multiple co-occurring environmental changes are affecting soil nitrogen cycling processes, which are mainly mediated by microbes. While it is likely that various nitrogen-cycling functional groups will respond differently to such environmental changes, very little is known about their relative responsiveness. Here we conducted four long-term experiments in a steppe ecosystem by removing plant functional groups, mowing, adding nitrogen, adding phosphorus, watering, warming, and manipulating some of their combinations. We quantified the abundance of seven nitrogen-cycling genes, including those for fixation (nifH), mineralization (chiA), nitrification (amoA of ammonia-oxidizing bacteria (AOB) or archaea (AOA)), and denitrification (nirS, nirK and nosZ). First, for each gene, we compared its sensitivities to different environmental changes and found that the abundances of various genes were sensitive to distinct and different factors. Overall, the abundances of nearly all genes were sensitive to nitrogen enrichment. In addition, the abundances of the chiA and nosZ genes were sensitive to plant functional group removal, the AOB-amoA gene abundance to phosphorus enrichment when nitrogen was added simultaneously, and the nirS and nirK gene abundances responded to watering. Second, for each single- or multi-factorial environmental change, we compared the sensitivities of the abundances of different genes and found that different environmental changes primarily affected different gene abundances. Overall, AOB-amoA gene abundance was most responsive, followed by the two denitrifying genes nosZ and nirS, while the other genes were less sensitive. These results provide, for the first time, systematic insights into how the abundance of each type of nitrogen-cycling gene and the equilibrium state of all these nitrogen-cycling gene abundances would shift under each single- or multi-factorial global change.  相似文献   

4.
To determine the potential of DNA array technology for assessing functional gene diversity and distribution, a prototype microarray was constructed with genes involved in nitrogen cycling: nitrite reductase (nirS and nirK) genes, ammonia mono-oxygenase (amoA) genes, and methane mono-oxygenase (pmoA) genes from pure cultures and those cloned from marine sediments. In experiments using glass slide microarrays, genes possessing less than 80 to 85% sequence identity were differentiated under hybridization conditions of high stringency (65°C). The detection limit for nirS genes was approximately 1 ng of pure genomic DNA and 25 ng of soil community DNA using our optimized protocol. A linear quantitative relationship (r2 = 0.89 to 0.94) was observed between signal intensity and target DNA concentration over a range of 1 to 100 ng for genomic DNA (or genomic DNA equivalent) from both pure cultures and mixed communities. However, the quantitative capacity of microarrays for measuring the relative abundance of targeted genes in complex environmental samples is less clear due to divergent target sequences. Sequence divergence and probe length affected hybridization signal intensity within a certain range of sequence identity and size, respectively. This prototype functional gene array did reveal differences in the apparent distribution of nir and amoA and pmoA gene families in sediment and soil samples. Our results indicate that glass-based microarray hybridization has potential as a tool for revealing functional gene composition in natural microbial communities; however, more work is needed to improve sensitivity and quantitation and to understand the associated issue of specificity.  相似文献   

5.
Denitrification, the reduction of nitrogen oxides (NO3 and NO2) to N2 via the intermediates NO and N2O, is crucial for nitrogen turnover in soils. Cultivation-independent approaches that applied nitrite reductase genes (nirK/nirS) as marker genes to detect denitrifiers showed a predominance of genes presumably derived from as yet uncultured organisms. However, the phylogenetic affiliation of these organisms remains unresolved since the ability to denitrify is widespread among phylogenetically unrelated organisms. In this study, denitrifiers were cultured using a strategy to generally enrich soil microorganisms. Of 490 colonies screened, eight nirK-containing isolates were phylogenetically identified (16S rRNA genes) as members of the Rhizobiales. A nirK gene related to a large cluster of sequences from uncultured bacteria mainly retrieved from soil was found in three isolates classified as Bradyrhizobium sp. Additional isolates were classified as Bradyrhizobium japonicum and Bosea sp. that contained nirK genes also closely related to the nirK from these strains. These isolates denitrified, albeit with different efficiencies. In Devosia sp., nirK was the only denitrification gene detected. Two Mesorhizobium sp. isolates contained a nirK gene also related to nirK from cultured Mesorhizobia and uncultured soil bacteria but no gene encoding nitric oxide or nitrous oxide reductase. These isolates accumulated NO under nitrate-reducing conditions without growth, presumably due to the lethal effects of NO. This showed the presence of a functional nitrite reductase but lack of a nitric oxide reductase. In summary, similar nirK genotypes recurrently detected mainly in soils likely originated from Rhizobia, and functional differences were presumably strain-dependent.  相似文献   

6.
The genetic heterogeneity of nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in forested upland and marsh soil was investigated using molecular methods. nirK gene fragments could be amplified from both soils, whereas nirS gene fragments could be amplified only from the marsh soil. PCR products were cloned and screened by restriction fragment length polymorphism (RFLP), and representative fragments were sequenced. The diversity of nirK clones was lower than the diversity of nirS clones. Among the 54 distinct nirK RFLP patterns identified in the two soils, only one pattern was found in both soils and in each soil two dominant groups comprised >35% of all clones. No dominance and few redundant patterns were seen among the nirS clones. Phylogenetic analysis of deduced amino acids grouped the nirK sequences into five major clusters, with one cluster encompassing most marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall, the data indicated that the denitrifying communities in the two soils have many members and that the soils have a high richness of different nir genes, especially of the nirS gene, most of which have not yet been found in cultivated denitrifiers.  相似文献   

7.
We studied potential links between environmental factors, nitrous oxide (N2O) accumulation, and genetic indicators of nitrite and N2O reducing bacteria in 12 boreal lakes. Denitrifying bacteria were investigated by quantifying genes encoding nitrite and N2O reductases (nirS/nirK and nosZ, respectively, including the two phylogenetically distinct clades nosZ I and nosZ II) in lake sediments. Summertime N2O accumulation and hypolimnetic nitrate concentrations were positively correlated both at the inter-lake scale and within a depth transect of an individual lake (Lake Vanajavesi). The variability in the individual nirS, nirK, nosZ I, and nosZ II gene abundances was high (up to tenfold) among the lakes, which allowed us to study the expected links between the ecosystem’s nir-vs-nos gene inventories and N2O accumulation. Inter-lake variation in N2O accumulation was indeed connected to the relative abundance of nitrite versus N2O reductase genes, i.e. the (nirS+nirK)/nosZ I gene ratio. In addition, the ratios of (nirS+nirK)/nosZ I at the inter-lake scale and (nirS+nirK)/nosZ I+II within Lake Vanajavesi correlated positively with nitrate availability. The results suggest that ambient nitrate concentration can be an important modulator of the N2O accumulation in lake ecosystems, either directly by increasing the overall rate of denitrification or indirectly by controlling the balance of nitrite versus N2O reductase carrying organisms.  相似文献   

8.
M. Li  Y. Hong  H. Cao  M. G. Klotz  J.‐D. Gu 《Geobiology》2013,11(2):170-179
In marine ecosystems, both nitrite‐reducing bacteria and anaerobic ammonium‐oxidizing (anammox) bacteria, containing different types of NO‐forming nitrite reductase–encoding genes, contribute to the nitrogen cycle. The objectives of study were to reveal the diversity, abundance, and distribution of NO‐forming nitrite reductase–encoding genes in deep‐sea subsurface environments. Results showed that higher diversity and abundance of nirS gene than nirK and Scalindua‐nirS genes were evident in the sediments of the South China Sea (SCS), indicating bacteria containing nirS gene dominated the NO‐forming nitrite‐reducing microbial community in this ecosystem. Similar diversity and abundance distribution patterns of both nirS and Scalindua‐nirS genes were detected in this study sites, but different from nirK gene. Further statistical analyses also showed both nirS and Scalindua‐nirS genes respond similarly to environmental factors, but differed from nirK gene. These results suggest that bacteria containing nirS and Scalindua‐nirS genes share similar niche in deep‐sea subsurface sediments of the SCS, but differed from those containing nirK gene, indicating that community structures of nitrite‐reducing bacteria are segregated by the functional modules (NirS vs. NirK) rather than the competing processes (anammox vs. classical denitrification).  相似文献   

9.
Denitrification is an important process in the global nitrogen cycle. The genes encoding NirK and NirS (nirK and nirS), which catalyze the reduction of nitrite to nitric oxide, have been used as marker genes to study the ecological behavior of denitrifiers in environments. However, conventional polymerase chain reaction (PCR) primers can only detect a limited range of the phylogenetically diverse nirK and nirS. Thus, we developed new PCR primers covering the diverse nirK and nirS. Clone library and qPCR analysis using the primers showed that nirK and nirS in terrestrial environments are more phylogenetically diverse and 2–6 times more abundant than those revealed with the conventional primers. RNA- and culture-based analyses using a cropland soil also suggested that microorganisms with previously unconsidered nirK or nirS are responsible for denitrification in the soil. PCR techniques still have a greater capacity for the deep analysis of target genes than PCR-independent methods including metagenome analysis, although efforts are needed to minimize the PCR biases. The methodology and the insights obtained here should allow us to achieve a more precise understanding of the ecological behavior of denitrifiers and facilitate more precise estimate of denitrification in environments.  相似文献   

10.
Nitrous oxide (N2O) is a potent greenhouse gas and the predominant ozone depleting substance. The only enzyme known to reduce N2O is the nitrous oxide reductase, encoded by the nosZ gene, which is present among bacteria and archaea capable of either complete denitrification or only N2O reduction to di-nitrogen gas. To determine whether the occurrence of nosZ, being a proxy for the trait N2O reduction, differed among taxonomic groups, preferred habitats or organisms having either NirK or NirS nitrite reductases encoded by the nirK and nirS genes, respectively, 652 microbial genomes across 18 phyla were compared. Furthermore, the association of different co-occurrence patterns with enzymes reducing nitric oxide to N2O encoded by nor genes was examined. We observed that co-occurrence patterns of denitrification genes were not randomly distributed across taxa, as specific patterns were found to be more dominant or absent than expected within different taxonomic groups. The nosZ gene had a significantly higher frequency of co-occurrence with nirS than with nirK and the presence or absence of a nor gene largely explained this pattern, as nirS almost always co-occurred with nor. This suggests that nirS type denitrifiers are more likely to be capable of complete denitrification and thus contribute less to N2O emissions than nirK type denitrifiers under favorable environmental conditions. Comparative phylogenetic analysis indicated a greater degree of shared evolutionary history between nosZ and nirS. However 30% of the organisms with nosZ did not possess either nir gene, with several of these also lacking nor, suggesting a potentially important role in N2O reduction. Co-occurrence patterns were also non-randomly distributed amongst preferred habitat categories, with several habitats showing significant differences in the frequencies of nirS and nirK type denitrifiers. These results demonstrate that the denitrification pathway is highly modular, thus underpinning the importance of community structure for N2O emissions.  相似文献   

11.
[目的]微生物参与的反硝化是河口区氮损失的主要途径.[方法]本研究采用Illumina MiSeq测序方法,研究了长江口外低氧区及其邻近海域表层沉积物中nirS型和nirK型反硝化微生物群落的多样性和分布特征.[结果]样品共检测到346个nirS Operational Taxonomic Units和267个nirK...  相似文献   

12.
Genetic heterogeneity of denitrifying bacteria in sediment samples from Puget Sound and two sites on the Washington continental margin was studied by PCR approaches amplifying nirK and nirS genes. These structurally different but functionally equivalent single-copy genes coding for nitrite reductases, a key enzyme of the denitrification process, were used as a molecular marker for denitrifying bacteria. nirS sequences could be amplified from samples of both sampling sites, whereas nirK sequences were detected only in samples from the Washington margin. To assess the underlying nir gene structure, PCR products of both genes were cloned and screened by restriction fragment length polymorphism (RFLP). Rarefraction analysis revealed a high level of diversity especially for nirS clones from Puget Sound and a slightly lower level of diversity for nirK and nirS clones from the Washington margin. One group dominated within nirK clones, but no dominance and only a few redundant clones were seen between sediment samples for nirS clones in both habitats. Hybridization and sequencing confirmed that all but one of the 228 putative nirS clones were nirS with levels of nucleotide identities as low as 45.3%. Phylogenetic analysis grouped nirS clones into three distinct subclusters within the nirS gene tree which corresponded to the two habitats from which they were obtained. These sequences had little relationship to any strain with known nirS sequences or to isolates (mostly close relatives of Pseudomonas stutzeri) from the Washington margin sediment samples. nirK clones were more closely related to each other than were the nirS clones, with 78.6% and higher nucleotide identities; clones showing only weak hybridization signals were not related to known nirK sequences. All nirK clones were also grouped into a distinct cluster which could not be placed with any strain with known nirK sequences. These findings show a very high diversity of nir sequences within small samples and that these novel nir clusters, some very divergent from known sequences, are not known in cultivated denitrifiers.  相似文献   

13.
Nitrification and denitrification are bacterial functions, which are important for the global nitrogen cycle. Thus, it is important to study the diversity and distribution of bacteria in the environment, which are involved in the nitrogen cycle on the earth. Ammonia monooxygenase encoded by the amoA gene and nitrite reductase encoded by nirK or nirS are essential enzymes for nitrificaton and denitrification, respectively. These genes can be used as markers for the identification of organisms in the nitrogen cycle. In this study, we identified amoA (42 clones) and nirS (98 clones) genes in parallel from samples recovered from the deep-sea of the Nankai Trough. Genes for nirK could not be amplified from these samples. The obtained amoA sequences were not so closely related to those of amoA genes from previously isolated environmental organisms and those of genes from environmental DNAs. On the other hand, the nirS genes sequenced showed some relationship to some extent with the latter genes. However, some of the newly sequenced genes formed clusters, which contained no previously identified genes on a phylogenetic tree. These are likely present in specific denitrifiers from the deep-sea. The results of this study further suggest that nitrifiers and denitrifiers live in the same area of the Nankai Trough and the nitrogen cycle exists even in the deep-sea.  相似文献   

14.
The purpose of this study was to investigate the diversity of denitrifier community during agricultural waste composting. The diversity and dynamics of the denitrifying genes (nirK and nirS) were determined using polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between physico-chemical parameters and denitrifying genes structures were simultaneously evaluated by redundancy analysis (RDA). Phylogenetic analysis indicated that nirK clones grouped into six clusters and nirS clones into two major clusters, respectively. The results showed a very high diversity of nir gene sequences within composting samples. RDA showed that the nirK and nirS gene structures were significantly related to pH and pile temperature (P?<?0.05). Significant amounts of the variation (49.2 and 38.3 % for nirK and nirS genes, respectively) were explained by pH and pile temperature, suggesting that those two parameters were the most likely ones to influence, or be influenced by the denitrifiers harboring nirK and nirS genes.  相似文献   

15.
Investigation of the diversity of nirK and nirS in denitrifying bacteria revealed that salinity decreased the diversity in a nitrate-containing saline wastewater treatment system. The predominant nirS clone was related to nirS derived from marine bacteria, and the predominant nirK clone was related to nirK of the genus Alcaligenes.  相似文献   

16.
The effect of long-term fertilization on soil-denitrifying communities was determined by measuring the abundance and diversity of the nitrite reductase genes nirK and nirS. Soil samples were collected from plots of a long-term fertilization experiment started in 1990, located in Taoyuan (110°72″ E, 28°52″ N), China. The treatments were no fertilizer (NF), urea (UR), balanced mineral fertilizers (BM), and BM combined with rice straw (BMR). The abundance, diversity, and composition of the soil-denitrifying bacteria were determined by using real-time quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), and cloning and sequencing of nirK and nirS genes. There was a pronounced difference in the community composition and diversity of nirK-containing denitrifiers responding to the long-term fertilization regimes; however, less variation was observed in communities of nirS-containing denitrifiers, indicating that denitrifiers possessing nirK were more sensitive to the fertilization practices than those with nirS. In contrast, fertilization regimes had similar effects on the copy numbers of nirK and nirS genes. The BMR treatment had the highest copy numbers of nirK and nirS, followed by the two mineral fertilization regimes (UR and BM), and the lowest was in the NF treatment. Of the measured soil parameters, the differences in the community composition of nirK and the abundance of nir denitrifiers were highly correlated with the soil carbon content. Therefore, long-term fertilization resulted in a strong impact on the community structure of nirK populations only, and total organic carbon was the dominant factor in relation to the variations of nir community sizes.  相似文献   

17.
We have studied the distribution and community composition of denitrifying bacteria in the stratified water column and at the sediment–water interface in lakes Plußsee and Schöhsee, and a near-shore site in the Baltic Sea in Germany. Although environmental changes induced by the stratification of the water column in marine environments are known to affect specific populations of denitrifying bacteria, little information is available for stratified freshwater lakes and brackish water. The aim of the present study was to fill this gap and to demonstrate specific distribution patterns of denitrifying bacteria in specific aquatic habitats using two functional markers for the nitrite reductase (nirK and nirS genes) as a proxy for the communities. The leading question to be answered was whether communities containing the genes nirK and nirS have similar, identical, or different distribution patterns, and occupy the same or different ecological niches. The genes nirK and nirS were analyzed by PCR amplification with specific primers followed by terminal restriction fragment length polymorphism (T-RFLP) and by cloning and sequence analysis. Overall, nirS-denitrifiers were more diverse than nirK-denitrifiers. Denitrifying communities in sediments were clearly different from those in the water column in all aquatic systems, regardless of the gene analyzed. A differential distribution of denitrifying assemblages was observed for each particular site. In the Baltic Sea and Lake Plußsee, nirK-denitrifiers were more diverse throughout the water column, while nirS-denitrifiers were more diverse in the sediment. In Lake Schöhsee, nirS-denitrifiers showed high diversity across the whole water body. Habitat-specific clusters of nirS sequences were observed for the freshwater lakes, while nirK sequences from both freshwater lakes and the Baltic Sea were found in common phylogenetic clusters. These results demonstrated differences in the distribution of bacteria containing nirS and those containing nirK indicating that both types of denitrifiers apparently occupy different ecological niches.  相似文献   

18.
Complete removal of plants and soil to exposed bedrock, in order to eradicate the Hole-in-the-Donut (HID) region of the Everglades National Park, FL, of exotic invasive plants, presented the opportunity to monitor the redevelopment of soil and the associated microbial communities along a short-term restoration chronosequence. Sampling plots were established for sites restored in 1989, 1997, 2000, 2001, and 2003. The goal of this study was to characterize the activity and diversity of denitrifying bacterial populations in developing HID soils in an effort to understand changes in nitrogen (N) cycling during short-term primary succession. Denitrifying enzyme activity (DEA) was detected in soils from all sites, indicating a potential for N loss via denitrification. However, no correlation between DEA and time since disturbance was observed. Diversity of bacterial denitrifiers in soils was characterized by sequence analysis of nitrite reductase genes (nirK and nirS) in DNA extracts from soils ranging in nitrate concentrations from 1.8 to 7.8 mg kg−1. High levels of diversity were observed in both nirK and nirS clone libraries. Statistical analyses of clone libraries suggest a different response of nirS- and nirK-type denitrifiers to factors associated with soil redevelopment. nirS populations demonstrated a linear pattern of succession, with individual lineages represented at each site, while multiple levels of analysis suggest nirK populations respond in a grouped pattern. These findings suggest that nirK communities are more sensitive than nirS communities to environmental gradients in these soils.  相似文献   

19.
Sulfadiazine (SDZ) is an antibiotic frequently used in agricultural husbandry. Via manuring of excrements of medicated animals, the drug reaches the soil and might impair important biochemical transformation processes performed by microbes, e.g., the nitrogen turnover. We studied the effect of pig manure and SDZ-spiked pig manure on denitrifying bacteria by quantifying nirK and nirS nitrite reductase genes in two arable soils. Addition of manure entailed mainly an increase of nirK-harboring denitrifiers in both soils, whereas in the SDZ-amended treatments, primarily the nirS denitrifiers increased in abundance after the bioavailable SDZ had declined. However, the community composition of nirS nitrite reducers investigated by denaturing gradient gel electrophoresis did not change despite the observed alterations in abundance.  相似文献   

20.
Acid N depositions in the Bohemian Forest during the second half of the last century caused enormous soil acidification which led to the leaching of essential nutrients including nitrates. We investigated the effect of dissolved organic matter (DOM) and pH on the abundance of 16S RDNA, nirK and nirS gene copies in four spruce forest sites. Soil samples for molecular based quantification (qPCR) were taken from the organic litter and humus layers. The amounts of dissolved organic carbon (DOC) and dissolved nitrogen (DN) were much lower in highly acidified soils. We found a strong correlation between nirK denitrifiers and the amount of available P (r = 0.83, p < 0.001), which suggested a higher nutrient sensitivity of this group of denitrifying bacteria. Additionally, we found that correlations between the amount of nirK denitrifiers and DOC and pH are exponentional showing two important threshold values, being 4.8 mol kg?1 and 5, respectively. The amount of nirK denitrifiers rapidly decreased below these values. The amount of nirK and nirS denitrifiers was higher in the organic litter horizon than the organic humus horizon at all sampling sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号