首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just like other anaerobic succinic acid producers. We recently reported the development of an engineered M. succiniciproducens LPK7 strain which produces succinic acid as a major fermentation product while producing much reduced by-products. Having an improved succinic acid producer developed, it is equally important to develop a cost-effective downstream process for the recovery of succinic acid. In this paper, we report the development of a simpler and more efficient method for the recovery of succinic acid. For the recovery of succinic acid from the fermentation broth of LPK7 strain, a simple process composed of a single reactive extraction, vacuum distillation, and crystallization yielded highly purified succinic acid (greater than 99.5% purity, wt%) with a high yield of 67.05wt%. When the same recovery process or even multiple reactive extraction steps were applied to the fermentation broth of MBEL55E, lower purity and yield of succinic acid were obtained. These results suggest that succinic acid can be purified in a cost-effective manner by using the fermentation broth of engineered LPK7 strain, showing the importance of integrating the strain development, fermentation and downstream process for optimizing the whole processes for succinic acid production.  相似文献   

2.
Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce a large amount of succinic acid in a medium containing glucose, peptone, and yeast extract. In order to reduce the cost of the medium, whey and corn steep liquor (CSL) were used as substrates for the production of succinic acid by M. succiniciproducens MBEL55E. Anaerobic batch cultures of M. succiniciproducens MBEL55E in a whey-based medium containing CSL resulted in the production of succinic acid with a yield of 71% and productivity of 1.18 g/l/h, which are similar to those obtained in a whey-based medium containing yeast extract (72% and 1.21 g/l/h). Anaerobic continuous culture of M. succiniciproducens MBEL55E in a whey-based medium containing CSL resulted in a succinic acid yield of 69% and a succinic acid productivity as high as 3.90 g/l/h. These results show that succinic acid can be produced efficiently and economically by M. succiniciproducens MBEL55E from whey and CSL.  相似文献   

3.
Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strain capable of producing succinic acid without by-product formation. Among three different CO2-fixing metabolic reactions catalyzed by phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, and malic enzyme, PEP carboxykinase was the most important for the anaerobic growth of M. succiniciproducens and succinic acid production. Oxaloacetate formed by carboxylation of PEP was found to be converted to succinic acid by three sequential reactions catalyzed by malate dehydrogenase, fumarase, and fumarate reductase. Major metabolic pathways leading to by-product formation were successfully removed by disrupting the ldhA, pflB, pta, and ackA genes. This metabolically engineered LPK7 strain was able to produce 13.4 g/liter of succinic acid from 20 g/liter glucose with little or no formation of acetic, formic, and lactic acids, resulting in a succinic acid yield of 0.97 mol succinic acid per mol glucose. Fed-batch culture of M. succiniciproducens LPK7 with intermittent glucose feeding allowed the production of 52.4 g/liter of succinic acid, with a succinic acid yield of 1.16 mol succinic acid per mol glucose and a succinic acid productivity of 1.8 g/liter/h, which should be useful for industrial production of succinic acid.  相似文献   

4.
Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E were carried out in a complex medium containing a NaOH-treated wood hydrolysate for the production of succinic acid. The wood hydrolysate based medium was treated with NaOH before sterilization to reduce the formation of inhibitory compounds. M. succiniciproducens MBEL55E utilized xylose as well as glucose in the wood hydrolysate based medium as a carbon source for the succinic acid production. In batch cultures, the final succinic acid concentration of 11.73 g l−1 was obtained from the pre-treated wood hydrolysate based medium, resulting in a succinic acid yield of 56% and a succinic acid productivity of 1.17 g l−1 h−1, while the corresponding continuous cultures gave the succinic acid yield and productivity of 55% and 3.19 g l−1 h−1, respectively. These results suggest that succinic acid can be produced economically and efficiently by the fermentation of M. succiniciproducens MBEL55E from an inexpensive biomass-based wood hydrolysate.  相似文献   

5.
ApckA gene encoding phosphoenolpyruvate carboxykinase (PEPCK) was cloned and sequenced from the succinic acid producing bacteriumMannheimia succiniciproducens MBEL55E. The gene encoded a 538 residue polypeptide with a calculated molecular mass of 58.8 kDa and a calculated pI of 5.03. The deduced amino acid sequence of theM. succiniciproducens MBEL55E PEPCK was similar to those of all known ATP-dependent PEPCKs.  相似文献   

6.
Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strain capable of producing succinic acid without by-product formation. Among three different CO2-fixing metabolic reactions catalyzed by phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, and malic enzyme, PEP carboxykinase was the most important for the anaerobic growth of M. succiniciproducens and succinic acid production. Oxaloacetate formed by carboxylation of PEP was found to be converted to succinic acid by three sequential reactions catalyzed by malate dehydrogenase, fumarase, and fumarate reductase. Major metabolic pathways leading to by-product formation were successfully removed by disrupting the ldhA, pflB, pta, and ackA genes. This metabolically engineered LPK7 strain was able to produce 13.4 g/liter of succinic acid from 20 g/liter glucose with little or no formation of acetic, formic, and lactic acids, resulting in a succinic acid yield of 0.97 mol succinic acid per mol glucose. Fed-batch culture of M. succiniciproducens LPK7 with intermittent glucose feeding allowed the production of 52.4 g/liter of succinic acid, with a succinic acid yield of 1.16 mol succinic acid per mol glucose and a succinic acid productivity of 1.8 g/liter/h, which should be useful for industrial production of succinic acid.  相似文献   

7.
γ-Butyrolactone (GBL) is an important four carbon (C4) chemical, which has a wide range of industrial applications. GBL can be produced by acid treatment of 4-hydroxybutyric acid (4-HB), which is a derivative of succinic acid. Heterologous metabolic pathways were designed and established in succinic acid overproducing Mannheimia succiniciproducens LPK7 (ldhA pflD pta ackA mutant) by the introduction of heterologous genes that encode succinyl-CoA synthetase, CoA-dependent succinate semialdehyde dehydrogenase, and either 4-hydroxybutyrate dehydrogenase in LPK7 (p3S4CD) or succinate semialdehyde reductase in LPK7 (p3SYCD). Fed-batch cultures of LPK7 (p3S4CD) and LPK7 (p3SYCD) resulted in the production of 6.37 and 6.34 g/L of 4-HB (molar yields of 0.143 and 0.139), respectively. Finally, GBL was produced by acid treatment of the 4-HB obtained from the fermentation broth with molar yield of 0.673. This study demonstrates that 4-HB, and potentially other four carbon platform chemicals, can be produced by the engineered rumen bacterium M. succiniciproducens.  相似文献   

8.
Mannheimia succiniciproducens, a capnophilic gram‐negative rumen bacterium, has been employed for the efficient production of succinic acid. Although M. succiniciproducens metabolism was previously studied using a genome‐scale metabolic model, more metabolic characteristics are to be understood. To this end, elementary mode analysis accompanied with clustering (‘EMC’ analysis) is used to gain further insights on metabolic characteristics of M. succiniciproducens allowing efficient succinic acid production. Elementary modes (EMs) generated from the central carbon metabolic network of M. succiniciproducens are clustered to systematically analyze succinic acid production routes. Based on the results of EMC analysis, zwf gene is identified as a novel overexpression target for the improved succinic acid production. This gene is overexpressed in a previously constructed succinic acid‐overproducing M. succiniciproducens LPK7 strain. Heterologous NADPH‐dependent mdh is later intuitively selected for overexpression to synergistically improve succinic acid production by utilizing abundant NADPH pool mediated by the overexpressed zwf. The LPK7 strains co‐expressing mdh alone and both zwf and mdh genes are subjected to fed‐batch fermentation to better examine their succinic acid production performances. Strategies of EMC analysis will be useful for further metabolic engineering of M. succiniciproducens and other microorganisms to improve production of succinic acid and other chemicals of interest.  相似文献   

9.
Lee JW  Lee SY  Song H  Yoo JS 《Proteomics》2006,6(12):3550-3566
Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is an industrially important bacterium as an efficient succinic acid producer. Recently, its full genome sequence was determined. In the present study, we analyzed the M. succiniciproducens proteome based on the genome information using 2-DE and MS. We established proteome reference map of M. succiniciproducens by analyzing whole cellular proteins, membrane proteins, and secreted proteins. More than 200 proteins were identified and characterized by MS/MS supported by various bioinformatic tools. The presence of proteins previously annotated as hypothetical proteins or proteins having putative functions were also confirmed. Based on the proteome reference map, cells in the different growth phases were analyzed at the proteome level. Comparative proteome profiling revealed valuable information to understand physiological changes during growth, and subsequently suggested target genes to be manipulated for the strain improvement.  相似文献   

10.
Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is a capnophilic gram-negative bacterium that efficiently produces succinic acid, an industrially important four carbon dicarboxylic acid. In order to design a metabolically engineered strain which is capable of producing succinic acid with high yield and productivity, it is essential to optimize the whole metabolism at the systems level. Consequently, in silico modeling and simulation of the genome-scale metabolic network was employed for genome-scale analysis and efficient design of metabolic engineering experiments. The genome-scale metabolic network of M. succiniciproducens consisting of 686 reactions and 519 metabolites was constructed based on reannotation and validation experiments. With the reconstructed model, the network structure and key metabolic characteristics allowing highly efficient production of succinic acid were deciphered; these include strong PEP carboxylation, branched TCA cycle, relative weak pyruvate formation, the lack of glyoxylate shunt, and non-PTS for glucose uptake. Constraints-based flux analyses were then carried out under various environmental and genetic conditions to validate the genome-scale metabolic model and to decipher the altered metabolic characteristics. Predictions based on constraints-based flux analysis were mostly in excellent agreement with the experimental data. In silico knockout studies allowed prediction of new metabolic engineering strategies for the enhanced production of succinic acid. This genome-scale in silico model can serve as a platform for the systematic prediction of physiological responses of M. succiniciproducens to various environmental and genetic perturbations and consequently for designing rational strategies for strain improvement.  相似文献   

11.
12.
Escherichia coli strains with foreign genes under the isopropyl-β-d-thiogalactopyranoside-inducible promoters such as lac, tac, and trc were engineered and considered as the promising succinic acid-producing bacteria in many reports. The promoters mentioned above could also be induced by lactose, which had not been attempted for succinic acid production before. Here, the efficient utilization of lactose as inducer was demonstrated in cultures of the ptsG, ldhA, and pflB mutant strain DC1515 with ppc overexpression. A fermentative process for succinic acid production at high level by this strain was developed. In flask anaerobic culture, 14.86 g l−1 succinic acid was produced from 15 g l−1 glucose with a yield of 1.51 mol mol−1 glucose. In two-stage culture carried out in a 3-l bioreactor, the overall yield and concentration of succinic acid reached to 1.67 mol mol−1 glucose and 99.7 g l−1, respectively, with a productivity of 1.7 g l−1 h−1 in the anaerobic stage. The efficient utilization of lactose as inducer made recombinant E. coli a more capable strain for succinic acid production at large scale.  相似文献   

13.
A novel succinic acid-producing bacterium was isolated from bovine rumen. The bacterium is a non-motile, non-spore-forming, mesophilic and capnophilic gram-negative rod or coccobacillus. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to the recently reclassified genus Mannheimia as a novel species, and has been named Mannheimia succiniciproducens MBEL55E. Under 100% CO(2) conditions, it grows well in the pH range of 6.0-7.5 and produces succinic acid, acetic acid and formic acid at a constant ratio of 2:1:1. When M. succiniciproducensMBEL55E was cultured anaerobically in medium containing 20 g l(-1) glucose as carbon source, 13.5 g l(-1) of succinic acid was produced.  相似文献   

14.
The excretion of the aromatic amino acid l-tyrosine was achieved by manipulating three gene targets in the wild-type Escherichia coli K12: The feedback-inhibition-resistant (fbr) derivatives of aroG and tyrA were expressed on a low-copy-number vector, and the TyrR-mediated regulation of the aromatic amino acid biosynthesis was eliminated by deleting the tyrR gene. The generation of this l-tyrosine producer, strain T1, was based only on the deregulation of the aromatic amino acid biosynthesis pathway, but no structural genes in the genome were affected. A second tyrosine over-producing strain, E. coli T2, was generated considering the possible limitation of precursor substrates. To enhance the availability of the two precursor substrates phosphoenolpyruvate and erythrose-4-phosphate, the ppsA and the tktA genes were over-expressed in the strain T1 background, increasing l-tyrosine production by 80% in 50-ml batch cultures. Fed-batch fermentations revealed that l-tyrosine production was tightly correlated with cell growth, exhibiting the maximum productivity at the end of the exponential growth phase. The final l-tyrosine concentrations were 3.8 g/l for E. coli T1 and 9.7 g/l for E. coli T2 with a yield of l-tyrosine per glucose of 0.037 g/g (T1) and 0.102 g/g (T2), respectively.  相似文献   

15.
琥珀酸作为一种重要的C4平台化合物,广泛应用于食品、化学、医药等领域。利用大肠杆菌(Escherichia coli)发酵生产琥珀酸受胞内辅因子不平衡的影响,存在产率低、生产强度低、副产物多等问题。为此,对不同氧气条件下琥珀酸产量和化学计量学分析发现,微厌氧条件下E.coli FMME-N-26高效积累琥珀酸需要借助三羧酸循环(tricarboxylic acid cycle,TCA)为还原性三羧酸途径(reductive tricarboxylic acid pathway,r-TCA)提供足够的ATP和NADH。通过减少ATP消耗、强化ATP合成、阻断NADH竞争途径和构建NADH回补路径等代谢工程策略,组合调控胞内ATP与NADH含量,获得工程菌株E.coli FW-17。通过发酵条件优化,菌株E.coli FW-17在5 L发酵罐能积累139.52 g/L琥珀酸,比出发菌株提高了17.81%,乙酸浓度为1.40 g/L,降低了67.59%。进一步在1000 L发酵罐中进行放大实验,琥珀酸产量和乙酸浓度分别为140.2 g/L和1.38 g/L。  相似文献   

16.
Recombinant Escherichia coli have been constructed for the conversion of glucose as well as pentose sugars into L-lactic acid. The strains carry the lactate dehydrogenase gene from Streptococcus bovis on a low copy number plasmid for production of L-lactate. Three E. coli strains were transformed with the plasmid for producing L-lactic acid. Strains FBR9 and FBR11 were serially transferred 10 times in anaerobic cultures in sugar-limited medium containing glucose or xylose without selective antibiotic. An average of 96% of both FBR9 and FBR11 cells maintained pVALDH1 in anaerobic cultures. The fermentation performances of FBR9, FBR10, and FBR11 were compared in pH-controlled batch fermentations with medium containing 10% w/v glucose. Fermentation results were superior for FBR11, an E. coli B strain, compared to those observed for FBR9 or FBR10. FBR11 exhausted the glucose within 30 h, and the maximum lactic acid concentration (7.32% w/v) was 93% of the theoretical maximum. The other side-products detected were cell mass and succinic acid (0.5 g/l). Journal of Industrial Microbiology & Biotechnology (2001) 27, 259–264. Received 05 November 2000/ Accepted in revised form 03 July 2001  相似文献   

17.
己二酸是一种具有重要应用价值的二元羧酸,是合成尼龙-66的关键前体。目前,生物法生产己二酸存在生产周期长、生产效率低的问题。本研究选择一株野生型高产琥珀酸菌株大肠杆菌(Escherichia coli) FMME N-2为底盘细胞,首先通过引入逆己二酸降解途径的关键酶,成功构建了可合成0.34 g/L己二酸的E. coli JL00菌株;接着,对合成路径限速酶进行表达优化,使E. coli JL01菌株在摇瓶发酵条件下产量达到0.87 g/L;随后,通过敲除sucD基因、过表达acs基因和突变lpd基因的组合策略平衡己二酸合成前体的供应,优化菌株E. coli JL12己二酸产量进一步提升至1.51 g/L;最后,在5 L发酵罐上对己二酸发酵工艺进行优化。工程菌株经72 h分批补料发酵,己二酸的产量达到22.3 g/L,转化率为0.25 g/g,生产强度为0.31 g/(L·h),具备了一定的应用潜力。本研究可为包括己二酸在内的多种二元羧酸细胞工厂的构建提供理论依据和技术基础。  相似文献   

18.
Apfl ldhA double mutantEscherichia coli strain NZN111 was used to produce succinic acid by overexpressing theE. coli malic enzyme gene (sfcA). This strain, however, produced a large amount of malic acid as well as succinic acid. After the analyses of the metabolic pathways, thefumB gene encoding the anaerobic fumarase ofE. coli was co-amplified to solve the problem of malic acid accumulation. A plasmid, pTrcMLFu, was constructed, which contains an artificial operon (sfcA-fumB) under the control of the inducibletrc promoter. From the batch culture of recombinantE. coli NZN111 harboring pTrcMLFu, 7 g/L of succinic acid was produced from 20 g/L of glucose, with no accumulation of malic acid. From the metabolic flux analysis the strain was found under reducing power limiting conditions by severe reorientation of metabolic fluxes.  相似文献   

19.
We have previously reported in vivo biosynthesis of polylactic acid (PLA) and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] employing metabolically engineered Escherichia coli strains by the introduction of evolved Clostridium propionicum propionyl-CoA transferase (Pct Cp ) and Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1 Ps6-19). Using this in vivo PLA biosynthesis system, we presently report the biosynthesis of PHAs containing 2-hydroxybutyrate (2HB) monomer by direct fermentation of a metabolically engineered E. coli strain. The recombinant E. coli ldhA mutant XLdh strain expressing PhaC1 Ps6-19 and Pct Cp was developed and cultured in a chemically defined medium containing 20 g/L of glucose and varying concentrations of 2HB and 3HB. PHAs consisting of 2HB, 3HB, and a small fraction of lactate were synthesized. Their monomer compositions were dependent on the concentrations of 2HB and 3HB added to the culture medium. Even though the ldhA gene was completely deleted in the chromosome of E. coli, up to 6 mol% of lactate was found to be incorporated into the polymer depending on the culture condition. In order to synthesize PHAs containing 2HB monomer without feeding 2HB into the culture medium, a heterologous metabolic pathway for the generation of 2HB from glucose was constructed via the citramalate pathway, in which 2-ketobutyrate is synthesized directly from pyruvate and acetyl-CoA. Introduction of the Lactococcus lactis subsp. lactis Il1403 2HB dehydrogenase gene (panE) into E. coli allowed in vivo conversion of 2-ketobutyrate to 2HB. The metabolically engineered E. coli XLdh strain expressing the phaC1437, pct540, cimA3.7, and leuBCD genes together with the L. lactis Il1403 panE gene successfully produced PHAs consisting of 2HB, 3HB, and a small fraction of lactate by varying the 3HB concentration in the culture medium. As the 3HB concentration in the medium increased the 3HB monomer fraction in the polymer, the polymer content increased. When Ralstonia eutropha phaAB genes were additionally expressed in this recombinant E. coli XLdh strain, P(2HB-co-3HB-co-LA) having small amounts of 2HB and LA monomers could also be produced from glucose as a sole carbon source. The metabolic engineering strategy reported here should be useful for the production of PHAs containing 2HB monomer.  相似文献   

20.
Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar l-arabinose, a product of the degradation of lignocellulosic biomass. The resultant CRA1 recombinant strain expressed the Escherichia coli genes araA, araB, and araD encoding l-arabinose isomerase, l-ribulokinase, and l-ribulose-5-phosphate 4-epimerase, respectively, under the control of a constitutive promoter. Unlike the wild-type strain, CRA1 was able to grow on mineral salts medium containing l-arabinose as the sole carbon and energy source. The three cloned genes were expressed to the same levels whether cells were cultured in the presence of d-glucose or l-arabinose. Under oxygen deprivation and with l-arabinose as the sole carbon and energy source, strain CRA1 carbon flow was redirected to produce up to 40, 37, and 11%, respectively, of the theoretical yields of succinic, lactic, and acetic acids. Using a sugar mixture containing 5% d-glucose and 1% l-arabinose under oxygen deprivation, CRA1 cells metabolized l-arabinose at a constant rate, resulting in combined organic acids yield based on the amount of sugar mixture consumed after d-glucose depletion (83%) that was comparable to that before d-glucose depletion (89%). Strain CRA1 is, therefore, able to utilize l-arabinose as a substrate for organic acid production even in the presence of d-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号