共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
1. A technique is described for the rapid separation of intestinal epithelial cells from the incubation medium by passage through a silicon-oil layer and collection in acid, in which their soluble constituents are released. 2. The inhibition by fatty acids of pyruvate oxidation is further studied. Measurement of pyruvate transport in epithelial cells at 0 degree C showed that short- and medium-chain fatty acids as well as ricinoleate inhibit this transport. Propionate inhibits pyruvate transport by another mechanism than octanoate. 3. Differences between pyruvate propionate and octanoate transport across the epithelial cell membrane were obtained in efflux studies. These studies revealed that acetate, propionate, butyrate and high concentrations of bicarbonate readily stimulate the efflux of pyruvate, probably by anionic counter-transport. No effects were seen with octanoate and hexanoate. The data obtained in these efflux studies suggest that lipophilicity and the pKa values of the monocarboxylic acids determine the contribution of non-ionic diffusion to overall transport. 4. Saturation kinetics, competitive inhibition by short-chain fatty acids and counter-transport suggest a carrier-mediated transport of pyruvate. 相似文献
7.
8.
9.
10.
11.
12.
The kinetics of l-phenylalanine and l-lysine absorption by the rat small intestine in vivo have been studied by perfusing intestinal segments and monitoring simultaneously the uptake of the substrate into the intestinal tissue and its disappearance from the perfusate.The rate of phenylalanine disappearance is a linear function of the substrate concentration. Its uptake into the tissue is rapid and obeys saturation kinetics, but is not concentrative. Both tissue uptake and disappearance rate can be inhibited by leucine or methionine, but are not influenced by hydrophilic neutral or dibasic amino acids.Lysine disappearance from the perfusate and its uptake into the tissue both display saturation kinetics. Lysine transport is quantitatively smaller than that of phenylalanine. Both uptake and disappearance are inhibited by arginine and leucine, but are unaffected by other neutral amino acids or sugars.To analyse the kinetic results, integrated equations were developed to express the final concentration in the perfusate in terms of the original concentration. The disappearance rate was considered as a mixed process (saturable and non-saturable in parallel) in a one-compartment system, and the uptake by the tissue was treated as a two-compartment system in which the amino acid entered the cells by a mixed process but left them by a pure non-saturable mechanism.The results concerning disappearance from the lumen are compatible with the one-compartment model. Phenylalanine absorption can be described by a major non-saturable component and a minor saturable one, while lysine absorption occurs almost entirely by a saturable process. The two-compartment model does not adequately describe the tissue uptake results. 相似文献
13.
14.
Addition of fatty acids to isolated hepatocytes raised respiration rate by 92% and raised mitochondrial membrane potential (delta psi m) in situ from 155 to 162 mV suggesting that the increased fuel supply had a greater effect on respiration rate than any increases in processes that consumed mitochondrial protonmotive force (delta p). The relationship between delta psi m and respiration rate was changed by addition of fatty acids or lactate, showing that there was also stimulation of delta p-consuming reactions. In the presence of oligomycin the relationship between delta psi m and respiration rate was unaffected by substrate addition, showing that the kinetics of delta p consumption by the H+ leak across the mitochondrial inner membrane were unchanged. The stimulation of delta p consumers by fatty acids therefore must be in the pathways of ATP synthesis and turnover. Inhibition of several candidate ATP-consuming reactions had little effect on basal or fatty acid-stimulated respiration, and the nature of the ATP turnover reactions in hepatocytes remains speculative. We conclude that fatty acids (and other substrates) stimulate respiration in hepatocytes in two distinct ways. They provide substrate for the electron transport chain, raising delta p and increasing the non-ohmic proton leak across the mitochondrial inner membrane and the rate of oxygen consumption. They also directly stimulate an unidentified delta p-consuming reaction in the cytoplasm. They do not work by uncoupling or by stimulation of intramitochondrial ATP-turnover reactions. 相似文献
15.
16.
17.
18.
19.
20.
The oxidation of fatty acids combined with albumin by isolated rat liver mitochondria 总被引:2,自引:0,他引:2
P Bj?rntorp 《The Journal of biological chemistry》1966,241(7):1537-1543
Long chain fatty acids at concentrations inhibiting mitochondrial respiration were, in the presence of serum albumin, found to produce almost as high a rate of oxygen uptake as alpha-ketoglutarate, succinate, or acetate. This oxidation was characterized in terms of its coupling to phosphorylation, need for cofactors, and production of different metabolites during the reactions. Fatty acids were oxidized to carbon dioxide, acetoacetate, beta-hydroxybutyrate, and other water-soluble metabolites, tentatively identified as intermediates of the citric acid cycle. An agent to spark the citric acid cycle and adenosine tri- or monophosphate were necessary for optimal oxidation rate, as described for other fatty acid oxidation systems. Balance experiments with different amounts of malate were performed with incubations lasting as long as oxygen uptake took place. In the presence of 1 mumole of malate, practically all added palmitic acid was used up and found to be converted primarily to carbon dioxide, acetoacetate, and other water-soluble metabolites of which the major part was tentatively identified as succinate. A significant portion was found in mitochondrial phospholipids. With 10 mumoles of malate some palmitic acid remained in the system, while a comparatively small amount was converted to carbon dioxide, and a major part was found as succinate. Here also incorporation into phospholipids occurred. With no malate added, fatty acid oxidation was much smaller than with malate, although significant conversion to carbon dioxide took place. Only a little succinate and phospholipid were found. Oxygen uptake was greater than a theoretical value calculated from radioactive balance experiments. It was concluded that albumin contains oxidizable material even after extraction and dialysis. Albumin at high concentrations inhibited both fatty acid and alpha-ketoglutarate oxidation. The oxidation of long chain fatty acids in high concentrations in the form of albumin-fatty acid complex was coupled to phosphorylation. Thus P:O ratios above 2 were found as well as evidence for respiratory control. It was concluded that oxidation of long chain fatty acids by isolated mitochondria occurs from their albumin complex. This process can also be studied at high concentrations of fatty acids, where high rates of oxygen uptake are obtained from oxidation which is coupled to phosphorylation. 相似文献