首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH)2D3 traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH)2D3 called 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D3-MARRS expression modulates 1,25(OH)2D3 activity in breast cancer cells.Relative levels of 1,25D3-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D3-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH)2D3 in MCF-7 cells, a ribozyme construct designed to knock down 1,25D3-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D3-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH)2D3 ( IC50 56 ± 24 nM) compared to controls (319 ± 181 nM; P < 0.05). Reduction in 1,25D3-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH)2D3. Knockdown of 1,25D3-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D3-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH)2D3 in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D3-MARRS expression or activity as anticancer agents.  相似文献   

2.
Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells. We hypothesized that 1,25(OH)2D3, the metabolically active form of vitamin D3, is growth suppressive in normal mouse mammary epithelial cells. In addition, we have previously established a role for the cytokine interleukin-1 alpha (IL1α) in the anti-proliferative effects of 1,25(OH)2D3 in normal prostate cells, and so we hypothesized that IL1α is involved in the 1,25(OH)2D3 response in mammary cells. Evaluation of cell viability, clonogenicity, senescence, and induction of cell cycle regulators p21 and p27 supported an anti-proliferative role for 1,25(OH)2D3 in mammary epithelial cells. Furthermore, 1,25(OH)2D3 increased the intracellular expression of IL1α, which was necessary for the anti-proliferative effects of 1,25(OH)2D3 in mammary cells. Together, these findings support the chemopreventative potential of vitamin D3 in the mammary gland and present a role for IL1α in regulation of mammary cell proliferation by 1,25(OH)2D3.  相似文献   

3.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption.  相似文献   

4.
5.
Epidemiological studies showed that 1,25-Dihydroxyvitamin D[1,25(OH)2D3] insufficiency appears to be associated with aging and colon cancer while underlying biological mechanisms remain largely unknown. Inflammatory bowel disease is one of the risk factors for colon cancer. In this study, we investigated whether 1,25(OH)2D3 deficiency has an impact on the colon of 25-hydroxyvitamin D 1α-hydroxylase knockout [Cyp27b1−/−] mice fed on a rescue diet (high calcium, phosphate, and lactose) from weaning to 10 months of age. We found that 1,25(OH)2D3 deficient mice displayed significant colon inflammation phenotypes including shortened colon length, thinned and disordered mucosal structure, and inflammatory cell infiltration. DNA damage, cellular senescence and the production of senescence-associated inflammatory cytokines were also increased significantly in the colon of Cyp27b1−/−mice. Furthermore, the levels of ROS in the colon were increased significantly, whereas the expression levels of antioxidative genes were down-regulated dramatically in the colon of Cyp27b1−/−mice. Taken together, our results demonstrated that 1,25(OH)2D3 deficiency could induce colon inflammation, which may result from increased oxidative stress and DNA damage, subsequently, induced cell senescence and overproduction of senescence-associated secretory factors. Therefore, our findings suggest that 1,25(OH)2D3 may play an important role in preventing the development and progression of colon inflammation and colon cancer.  相似文献   

6.
Cytosol prepared from small intestine of vitamin D-sufficient rabbits contains a specific high-affinity binding protein for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). This binding protein sediments at 3.0–3.5 S in sucrose density gradients containing 0.3 m KCl. Scatchard analysis using intestinal cytosol demonstrated a Kd of 0.05 nm and a maximum binding capacity of 92 fmol/mg cytosol protein for 1,25(OH)2D3 at 4°C. Competitive binding studies with various metabolites of vitamin D showed a relative binding affinity of this protein for 1,25(OH)2D3 > 25-hydroxy-vitamin D3 > vitamin D3. With 200 μg of rabbit intestinal cytosol protein, as little as 1.0–2.5 pg of 1,25(OH)2D3 reproducibly displaced the tracer sterol from the binding protein. Analyses of human plasma 1,25(OH)2D3 content yielded values consistent with published results. The vitamin D-replete rabbit provides a convenient, plentiful, and inexpensive source of binding protein for 1,25(OH)2D3 assays.  相似文献   

7.
Although both an active form of the vitamin D metabolite, 1,25(OH)2D3, and the vitamin D analogue, ED71 have been used to treat osteoporosis, anti-bone resorbing activity is reportedly seen only in ED71- but not in 1,25(OH)2D3 -treated patients. In addition, how ED71 inhibits osteoclast activity in patients has not been fully characterized. Recently, HIF1α expression in osteoclasts was demonstrated to be required for development of post-menopausal osteoporosis. Here we show that ED71 but not 1,25(OH)2D3, suppress HIF1α protein expression in osteoclasts in vitro. We found that 1,25(OH)2D3 or ED71 function in osteoclasts requires the vitamin D receptor (VDR). ED71 was significantly less effective in inhibiting M-CSF and RANKL-stimulated osteoclastogenesis than was 1,25(OH)2D3 in vitro. Downregulation of c-Fos protein and induction of Ifnβ mRNA in osteoclasts, both of which reportedly block osteoclastogenesis induced by 1,25(OH)2D3 in vitro, were both significantly higher following treatment with 1,25(OH)2D3 than with ED71. Thus, suppression of HIF1α protein activity in osteoclasts in vitro, which is more efficiently achieved by ED71 rather than by 1,25(OH)2D3, could be a reliable read-out in either developing or screening reagents targeting osteoporosis.  相似文献   

8.
9.
The role of 1,25(OH)2D3 on the intestinal NCX activity was studied in vitamin D-deficient chicks (-D) as well as the hormone effect on NCX1 protein and gene expression and the potential molecular mechanisms underlying the responses. Normal, -D and -D chicks treated with cholecalciferol or 1,25(OH)2D3 were employed. In some experiments, -D chicks were injected with cycloheximide or with cycloheximide and 1,25(OH)2D3 simultaneously. NCX activity was decreased by -D diet, returning to normal values after 50 IU daily of cholecalciferol/10 days or a dose of 1 μg calcitriol/kg of b.w. for 15 h. Cycloheximide blocked NCX activity enhancement produced by 1,25(OH)2D3. NCX1 protein and gene expression were diminished by -D diet and enhanced by 1,25(OH)2D3. Vitamin D receptor expression was decreased by -D diet, effect that disappeared after 1,25(OH)2D3 treatment. Rapid effects of 1,25(OH)2D3 on intestinal NCX activity were also demonstrated. The abolition of the rapid effects through addition of Rp-cAMPS and staurosporine suggests that non genomic effects of 1,25(OH)2D3 on NCX activity are mediated by activation of PKA and PKC pathways. In conclusion, 1,25(OH)2D3 enhances the intestinal NCX activity in -D chicks through genomic and non genomic mechanisms.  相似文献   

10.
11.
12.
Since the discovery of the Vitamin D receptor (VDR) in mammary cells, the role of the Vitamin D signaling pathway in normal glandular function and in breast cancer has been extensively explored. In vitro studies have demonstrated that the VDR ligand, 1,25(OH)2D3, modulates key proteins involved in signaling proliferation, differentiation and survival of normal mammary epithelial cells. Anti-proliferative and pro-differentiating effects of 1,25(OH)2D3 have also been observed in VDR positive breast cancer cells, indicating that transformation per se does not abolish Vitamin D signaling. However, many breast cancer cell lines are less sensitive to 1,25(OH)2D3 than normal mammary epithelial cells. Reduced sensitivity to 1,25(OH)2D3 has been linked to alterations in Vitamin D metabolizing enzymes as well as down regulation of VDR expression or function. In this report, we describe results from a proteomics screening approach used to search for proteins involved in dictating sensitivity or resistance to Vitamin D mediated apoptosis in breast cancer cells. Several proteins not previously linked to 1,25(OH)2D3 signaling were identified with this approach, and a distinct subset of proteins was linked to 1,25(OH)2D3 resistance. Follow-up studies to determine the relevance of these proteins to Vitamin D signaling in general are in progress.  相似文献   

13.
Retinoids and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) induce differentiation of myeloid leukemia cells into granulocyte and macrophage lineages, respectively. All-trans retinoic acid (ATRA), which is effective in the treatment of acute promyelocytic leukemia, can induce differentiation of other types of myeloid leukemia cells, and combined treatment with retinoid and 1,25(OH)2D3 effectively enhances the differentiation of leukemia cells into macrophage-like cells. Recent work has classified macrophages into M1 and M2 types. In this study, we investigated the effect of combined treatment with retinoid and 1,25(OH)2D3 on differentiation of myeloid leukemia THP-1 and HL60 cells. 9-cis Retinoic acid (9cRA) plus 1,25(OH)2D3 inhibited proliferation of THP-1 and HL60 cells and increased myeloid differentiation markers including nitroblue tetrazolium reducing activity and expression of CD14 and CD11b. ATRA and the synthetic retinoic acid receptor agonist Am80 exhibited similar effects in combination with 1,25(OH)2D3 but less effectively than 9cRA, while the retinoid X receptor agonist HX630 was not effective. 9cRA plus 1,25(OH)2D3 effectively increased expression of M2 macrophage marker genes, such as CD163, ARG1 and IL10, increased surface CD163 expression, and induced interleukin-10 secretion in myeloid leukemia cells, while 9cRA alone had weaker effects on these phenotypes and 1,25(OH)2D3 was not effective. Taken together, our results demonstrate selective induction of M2 macrophage markers in human myeloid leukemia cells by combined treatment with 9cRA and 1,25(OH)2D3.  相似文献   

14.
We have determined the dose-response of 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) on the intracellular free calcium-ion concentration ([Ca2+1]i) in the osteoblastic osteosarcoma cells, ROS 17/2.8, using 19F-NMR and the intracellular divalent cation indicator, 1,2-bis(2-amino-5-fluorephenoxy)ethane-N, N, N′, N′-tetraacetic acid (5F-BAPTA). The dose-response demonstrated an inverted U-shaped relationship with maximal elevation of [Ca2+]i at doses of 1 to 10 nM 1,25-(OH)2D3. At 10 nM, 1,25-(OH)2D3 elevated the [Ca2+]i from a control level of 118±4 nM to a peak value of 237±8 nM within 40 min. 1,25-(OH)2D3 also increased the intial rate of Ca2+ influx into ROs 17/2.8 cells, measured by 45Ca uptake, with a dose-response relationship which paralleled its effects on [Ca2+]i. Treatment of ROS 17/2.8 cells with Pb2+ at 1 and 5 μM significantly increased [Ca2+]i but significantly reduced the 1,25-(OH)2D3-induced elevation of [Ca2+]i. Simultaneous treatment of naive cells with 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3-induced 45Ca uptake while 40 min treatment with Pb2+ before addition of 1,25-(OH)2D3 significantly reduced the 1,25-(OH)2D3-induced increase in 45Ca influx. These findings suggest that Pb2+ acts by inhibiting 1,25-(OH)2D3-activation of Ca2+ channels and interferes with 1,25-(OH)2D3 regulation of Ca2+ metabolism in osteoblastic bone cells.  相似文献   

15.
Osteoarthritis (OA) is the most prevalent degenerative joint disease. The highly regulated balance of matrix synthesis and degradation is disrupted in OA, leading to progressive breakdown of articular cartilage. The molecular events and pathways involved in chondrocyte disfunction of cartilage in OA are not fully understood. It is known that 1,25-dihydroxyvitamin D₃ (1,25-(OH)2D3) is synthesized by macrophages derived from synovial fluid of patients with inflammatory arthritis. Vitmain D receptor is expressed in chondrocytes within osteoarthritic cartilage, suggesting a contributory role of 1,25-(OH)2D3 in the aberrant behavior of chondrocytes in OA. However, the physiological function of 1,25-(OH)2D3 on chondrocytes in OA remains obscure. Effect of 1,25-(OH)2D3 on gene expression in chondrocytes was investigated in this study. We found that 1,25-(OH)2D3 activated MMP13 expression in a dose-dependent and time-dependent manner, a major enzyme that targets cartilage for degradation. Interestingly, a specific mitogen-activated protein kinase p38 inhibitor SB203580, but not JNK kinase inhibitor SP600125, abrogated 1,25-(OH)2D3 activation of MMP13 expression. 1,25-(OH)2D3-induced increase in MMP13 protein level was in parallel with the phosphorylation of p38 in chondrocytes. To further address the effect of 1,25-(OH)2D3 on MMP13 expression, transfection assays were used to show that 1,25-(OH)2D3 activated the MMP13 promoter reporter expression. MMP13 is known to target type II collagen and aggrecan for degradation, two major components of cartilage matrix. We observed that the treatment of 1,25-(OH)2D3 in chondrocytes results in downregulation of both type II collagen and aggrecan while MMP13 was upregulated. Taken together, we provide the first evidence to demonstrate that 1,25-(OH)2D3 activates MMP13 expression through p38 pathway in chondrocytes. Since MMP13 plays a major role in cartilage degradation in OA, we speculate that the ability of 1,25-(OH)2D3 to potentiate MMP13 expression might facilitate cartilage erosion at the site of inflammatory arthritis.  相似文献   

16.
The biologically active metabolite of vitamin D3, 1,25 (OH)2 D3, exerts important immunoregulatory effects in addition to being a central mediator of calcium/phosphate metabolism. Utilizing an interleukin 1 responsive murine T cell line and 125I-interleukin 1α, we show that 1,25 (OH)2 D3 (5,50 nM) enhanced 125I-interleukin 1α binding up to almost 2-fold over control. This 1,25 (OH)2 D3 effect occurred in a dose-dependent manner and was detectable after 24 h but not before 7 h of culture. Scatchard analysis of 125I-interleukin 1α binding data demonstrated that 1,25 (OH)2 D3 enhanced interleukin 1 receptor number without a significant change in affinity. The biologically less potent metabolite of vitamin D3, 25 (OH) D3, also augmented 125I-interleukin 1α binding but at steroid levels 2–3 log orders greater than 1,25 (OH)2 D3. This observation, combined with the presence of high-affinity 3H-1,25 (OH)2 D3 receptors (88 sites/cell, K = 0.45 nM) in cytosolic extracts, strongly suggests that the nuclear vitamin D receptor mediates this steroid's effect on interleukin 1 receptor expression. Based on the capacity of an anti-type 1 interleukin 1 receptor monoclonal antibody (35F5) to block 1,25 (OH)2 D3-enhanced 125I-interleukin 1α binding, we conclude that this steroid augments type 1 interleukin 1 receptor expression. When combined with interleukin 1, a cytokine that also impacts MD10 interleukin 1 receptor expression, 1,25 (OH)2 D3 enhanced interleukin 1 receptor expression. Northern blots hybridized with a 32P-type 1 interleukin 1 receptor cDNA probe show that 1,25 (OH)2 D3 enhanced type 1 interleukin 1 receptor steady state mRNA levels. Functionally, 1,25 (OH)2 D3 pretreatment augmented the MD10 proliferative response to suboptimal levels of interleukin 1 (< 100 fM interleukin 1α). These findings further support 1,25 (OH)2 D3's role as an immunoregulatory molecule and provides a possible mechanism by which this steroid could potentiate certain immune activities.  相似文献   

17.
The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not only converted to 1,25(OH)2D3, but also to 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) which may have bioactivity as well. Therefore we used a primary human osteoblast model to examine whether 25(OH)D3 itself can affect osteoblast function using CYP27B1 silencing and to investigate whether 24R,25(OH)2D3 can affect osteoblast function. We showed that primary human osteoblasts responded to both 25(OH)D3 and 1,25(OH)2D3 by reducing their proliferation and enhancing their differentiation by the increase of alkaline phosphatase, osteocalcin and osteopontin expression. Osteoblasts expressed CYP27B1 and CYP24 and synthesized 1,25(OH)2D3 and 24R,25(OH)2D3 dose-dependently. Silencing of CYP27B1 resulted in a decline of 1,25(OH)2D3 synthesis, but we observed no significant differences in mRNA levels of differentiation markers in CYP27B1-silenced cells compared to control cells after treatment with 25(OH)D3. We demonstrated that 24R,25(OH)2D3 increased mRNA levels of alkaline phosphatase, osteocalcin and osteopontin. In addition, 24R,25(OH)2D3 strongly increased CYP24 mRNA. In conclusion, the vitamin D metabolites 25(OH)D3, 1,25(OH)2D3 and 24R,25(OH)2D3 can affect osteoblast differentiation directly or indirectly. We showed that primary human osteoblasts not only respond to 1,25(OH)2D3, but also to 24R,25(OH)2D3 by enhancing osteoblast differentiation. This suggests that 25(OH)D3 can affect osteoblast differentiation via conversion to the active metabolite 1,25(OH)2D3, but also via conversion to 24R,25(OH)2D3. Whether 25(OH)D3 has direct actions on osteoblast function needs further investigation.  相似文献   

18.
《Bone and mineral》1989,5(3):323-333
Investigation of the effects of 1,25(OH)2D3 and 24,25(OH)2D3 on the proliferation and differentiation of the human myelomonocytic cell line U937 has been complemented with studies of the effect of the same metabolites on the number of nuclear receptors for 1,25(OH)2D3. Both 1,25(OH)2D3 and 24,25(OH)2D3 inhibit the proliferation of U937 cells in a dose-dependent manner. The concentrations of 24,25(OH)2D3 required to produce this effect were 100-times greater than those of 1,25(OH)2D3. Inhibition of proliferation was associated with increased expression of the CD14 and 200 kDa 63D3 antigens thus confirming differentiation of U937 towards a more mature cell type.Studies of the nuclear receptor for 1,25(OH)2D3 showed that pre-treatment of the cells with 1,25(OH)2D3 resulted in an apparent 40% decrease in the number of detectable 1,25(OH)2D3 receptors as compared to control U937 cells. This is due to the fact that the 1,25(OH)2D3 binds to U937 cell nuclei during culture and thus blocks the subsequent binding of radiolabelled 1,25(OH)2D3 used to measure the number of 1,25(OH)2D3 receptors. Measurement of the binding of unlabelled 1,25(OH)2D3 by radioimmunoassay indicated that pre-treatment of the cells with 1,25(OH)2D3 increased the capacity of U937 to bind the hormone, although measurement of these receptors by whole cell assay was prevented by the binding of 1,25(OH)2D3 itself. This effect was not observed with 24,25(OH)2D3 which was more easily displaced from binding sites by radiolabelled 1,25(OH)2D3 and it appears to act through low affinity binding to the 1,25(OH)2D3 receptor.  相似文献   

19.
Prostate cancer is the most commonly diagnosed cancer in the majority of western countries. Due to their antiproliferative and proapoptotic activity, vitamin D analogues have been introduced recently as an experimental therapy for prostate cancer. Clusterin (CLU) is a glycoprotein that has two known isoforms generated in human cells. A nuclear form of CLU protein (nCLU) is pro-apoptotic, and a secretory form (sCLU) is pro-survival. In this study, we analyzed whether proapoptotic and antiproliferative effects of 1,25(OH)2D3 on LNCaP prostate cancer cells are modulated by expression of sCLU. Using colony forming assay, we studied the effect of treatment with different doses of 1,25(OH)2D3 (10−6, 10−7, 10−10 M) on proliferation of LNCaP cells that were stable transfected and over-express sCLU (LNT-1) as compared to empty vector-transfected cells (LN/C). We also measured apoptosis using TUNEL assay. sCLU over-expression protected against both antiproliferative (30%) and proapoptotic (15%) effects of 1,25(OH)2D3, although this effect was statistically not significant. In conclusion, our findings demonstrate that expression of sCLU modulates growth regulatory effects of 1,25(OH)2D3 in prostate cancer indicating that CLU interferes with vitamin D signalling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号