首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

A large number of gene prediction programs for the human genome exist. These annotation tools use a variety of methods and data sources. In the recent ENCODE genome annotation assessment project (EGASP), some of the most commonly used and recently developed gene-prediction programs were systematically evaluated and compared on test data from the human genome. AUGUSTUS was among the tools that were tested in this project.

Results

AUGUSTUS can be used as an ab initio program, that is, as a program that uses only one single genomic sequence as input information. In addition, it is able to combine information from the genomic sequence under study with external hints from various sources of information. For EGASP, we used genomic sequence alignments as well as alignments to expressed sequence tags (ESTs) and protein sequences as additional sources of information. Within the category of ab initio programs AUGUSTUS predicted significantly more genes correctly than any other ab initio program. At the same time it predicted the smallest number of false positive genes and the smallest number of false positive exons among all ab initio programs. The accuracy of AUGUSTUS could be further improved when additional extrinsic data, such as alignments to EST, protein and/or genomic sequences, was taken into account.

Conclusion

AUGUSTUS turned out to be the most accurate ab initio gene finder among the tested tools. Moreover it is very flexible because it can take information from several sources simultaneously into consideration.
  相似文献   

2.
3.
4.
5.
6.

Background

The heme-protein interactions are essential for various biological processes such as electron transfer, catalysis, signal transduction and the control of gene expression. The knowledge of heme binding residues can provide crucial clues to understand these activities and aid in functional annotation, however, insufficient work has been done on the research of heme binding residues from protein sequence information.

Methods

We propose a sequence-based approach for accurate prediction of heme binding residues by a novel integrative sequence profile coupling position specific scoring matrices with heme specific physicochemical properties. In order to select the informative physicochemical properties, we design an intuitive feature selection scheme by combining a greedy strategy with correlation analysis.

Results

Our integrative sequence profile approach for prediction of heme binding residues outperforms the conventional methods using amino acid and evolutionary information on the 5-fold cross validation and the independent tests.

Conclusions

The novel feature of an integrative sequence profile achieves good performance using a reduced set of feature vector elements.
  相似文献   

7.

Background

The current progress in sequencing projects calls for rapid, reliable and accurate function assignments of gene products. A variety of methods has been designed to annotate sequences on a large scale. However, these methods can either only be applied for specific subsets, or their results are not formalised, or they do not provide precise confidence estimates for their predictions.

Results

We have developed a large-scale annotation system that tackles all of these shortcomings. In our approach, annotation was provided through Gene Ontology terms by applying multiple Support Vector Machines (SVM) for the classification of correct and false predictions. The general performance of the system was benchmarked with a large dataset. An organism-wise cross-validation was performed to define confidence estimates, resulting in an average precision of 80% for 74% of all test sequences. The validation results show that the prediction performance was organism-independent and could reproduce the annotation of other automated systems as well as high-quality manual annotations. We applied our trained classification system to Xenopus laevis sequences, yielding functional annotation for more than half of the known expressed genome. Compared to the currently available annotation, we provided more than twice the number of contigs with good quality annotation, and additionally we assigned a confidence value to each predicted GO term.

Conclusions

We present a complete automated annotation system that overcomes many of the usual problems by applying a controlled vocabulary of Gene Ontology and an established classification method on large and well-described sequence data sets. In a case study, the function for Xenopus laevis contig sequences was predicted and the results are publicly available at ftp://genome.dkfz-heidelberg.de/pub/agd/gene_association.agd_Xenopus.
  相似文献   

8.
9.

Background

In order to find correlated pairs of positions between proteins, which are useful in predicting interactions, it is necessary to concatenate two large multiple sequence alignments such that the sequences that are joined together belong to those that interact in their species of origin. When each protein is unique then the species name is sufficient to guide this match, however, when there are multiple related sequences (paralogs) in each species then the pairing is more difficult. In bacteria a good guide can be gained from genome co-location as interacting proteins tend to be in a common operon but in eukaryotes this simple principle is not sufficient.

Results

The methods developed in this paper take sets of paralogs for different proteins found in the same species and make a pairing based on their evolutionary distance relative to a set of other proteins that are unique and so have a known relationship (singletons). The former constitute a set of unlabelled nodes in a graph while the latter are labelled. Two variants were tested, one based on a phylogenetic tree of the sequences (the topology-based method) and a simpler, faster variant based only on the inter-sequence distances (the distance-based method). Over a set of test proteins, both gave good results, with the topology method performing slightly better.

Conclusions

The methods develop here still need refinement and augmentation from constraints other than the sequence data alone, such as known interactions from annotation and databases, or non-trivial relationships in genome location. With the ever growing numbers of eukaryotic genomes, it is hoped that the methods described here will open a route to the use of these data equal to the current success attained with bacterial sequences.
  相似文献   

10.
11.

Background

Studies of intrinsically disordered proteins that lack a stable tertiary structure but still have important biological functions critically rely on computational methods that predict this property based on sequence information. Although a number of fairly successful models for prediction of protein disorder have been developed over the last decade, the quality of their predictions is limited by available cases of confirmed disorders.

Results

To more reliably estimate protein disorder from protein sequences, an iterative algorithm is proposed that integrates predictions of multiple disorder models without relying on any protein sequences with confirmed disorder annotation. The iterative method alternately provides the maximum a posterior (MAP) estimation of disorder prediction and the maximum-likelihood (ML) estimation of quality of multiple disorder predictors. Experiments on data used at CASP7, CASP8, and CASP9 have shown the effectiveness of the proposed algorithm.

Conclusions

The proposed algorithm can potentially be used to predict protein disorder and provide helpful suggestions on choosing suitable disorder predictors for unknown protein sequences.
  相似文献   

12.

Introduction

Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed and the need of multiple software packages for each step of the processing workflow.

Objectives

Merge in the same platform the steps required for metabolomics data processing.

Methods

KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics platform.

Results

The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputation, normalization, batch correction and annotation.

Conclusion

KniMet provides the user with a local, modular and customizable workflow for the processing of both GC–MS and LC–MS open profiling data.
  相似文献   

13.
14.

Background

Genome sequences and genome annotation data have become available at ever increasing rates in response to the rapid progress in sequencing technologies. As a consequence the demand for methods supporting comparative, evolutionary analysis is also growing. In particular, efficient tools to visualize-omics data simultaneously for multiple species are sorely lacking. A first and crucial step in this direction is the construction of a common coordinate system. Since genomes not only differ by rearrangements but also by large insertions, deletions, and duplications, the use of a single reference genome is insufficient, in particular when the number of species becomes large.

Results

The computational problem then becomes to determine an order and orientations of optimal local alignments that are as co-linear as possible with all the genome sequences. We first review the most prominent approaches to model the problem formally and then proceed to showing that it can be phrased as a particular variant of the Betweenness Problem. It is NP hard in general. As exact solutions are beyond reach for the problem sizes of practical interest, we introduce a collection of heuristic simplifiers to resolve ordering conflicts.

Conclusion

Benchmarks on real-life data ranging from bacterial to fly genomes demonstrate the feasibility of computing good common coordinate systems.
  相似文献   

15.
16.
17.
18.

Background

Many methods have been developed for metagenomic sequence classification, and most of them depend heavily on genome sequences of the known organisms. A large portion of sequencing sequences may be classified as unknown, which greatly impairs our understanding of the whole sample.

Result

Here we present MetaBinG2, a fast method for metagenomic sequence classification, especially for samples with a large number of unknown organisms. MetaBinG2 is based on sequence composition, and uses GPUs to accelerate its speed. A million 100 bp Illumina sequences can be classified in about 1 min on a computer with one GPU card. We evaluated MetaBinG2 by comparing it to multiple popular existing methods. We then applied MetaBinG2 to the dataset of MetaSUB Inter-City Challenge provided by CAMDA data analysis contest and compared community composition structures for environmental samples from different public places across cities.

Conclusion

Compared to existing methods, MetaBinG2 is fast and accurate, especially for those samples with significant proportions of unknown organisms.

Reviewers

This article was reviewed by Drs. Eran Elhaik, Nicolas Rascovan, and Serghei Mangul.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号