首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Multipartite mitochondrial genomes are very rare in animals but have been found previously in two insect orders with highly rearranged genomes, the Phthiraptera (parasitic lice), and the Psocoptera (booklice/barklice).

Results

We provide the first report of a multipartite mitochondrial genome architecture in a third order with highly rearranged genomes: Thysanoptera (thrips). We sequenced the complete mitochondrial genomes of two divergent members of the Scirtothrips dorsalis cryptic species complex. The East Asia 1 species has the single circular chromosome common to animals while the South Asia 1 species has a genome consisting of two circular chromosomes. The fragmented South Asia 1 genome exhibits extreme chromosome size asymmetry with the majority of genes on the large, 14.28 kb, chromosome and only nad6 and trnC on the 0.92 kb mini-circle chromosome. This genome also features paralogous control regions with high similarity suggesting a very recent origin of the nad6 mini-circle chromosome in the South Asia 1 cryptic species.

Conclusions

Thysanoptera, along with the other minor paraenopteran insect orders should be considered models for rapid mitochondrial genome evolution, including fragmentation. Continued use of these models will facilitate a greater understanding of recombination and other mitochondrial genome evolutionary processes across eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1672-4) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

The ~17 Gb hexaploid bread wheat genome is a high priority and a major technical challenge for genomic studies. In particular, the D sub-genome is relatively lacking in genetic diversity, making it both difficult to map genetically, and a target for introgression of agriculturally useful traits. Elucidating its sequence and structure will therefore facilitate wheat breeding and crop improvement.

Results

We generated shotgun sequences from each arm of flow-sorted Triticum aestivum chromosome 5D using 454 FLX Titanium technology, giving 1.34× and 1.61× coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. By a combination of sequence similarity and assembly-based methods, ~74% of the sequence reads were classified as repetitive elements, and coding sequence models of 1314 (5DS) and 2975 (5DL) genes were generated. The order of conserved genes in syntenic regions of previously sequenced grass genomes were integrated with physical and genetic map positions of 518 wheat markers to establish a virtual gene order for chromosome 5D.

Conclusions

The virtual gene order revealed a large-scale chromosomal rearrangement in the peri-centromeric region of 5DL, and a concentration of non-syntenic genes in the telomeric region of 5DS. Although our data support the large-scale conservation of Triticeae chromosome structure, they also suggest that some regions are evolving rapidly through frequent gene duplications and translocations.

Sequence accessions

EBI European Nucleotide Archive, Study no. ERP002330

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1080) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

The domestic goat (Capra hircus), an important livestock species, belongs to a clade of Ruminantia, Bovidae, together with cattle, buffalo and sheep. The history of genome evolution and chromosomal rearrangements on a small scale in ruminants remain speculative. Recently completed goat genome sequence was released but is still in a draft stage. The draft sequence used a variety of assembly packages, as well as a radiation hybrid (RH) map of chromosome 1 as part of its validation.

Results

Using an improved RH mapping pipeline, whole-genome dense maps of 45,953 SNP markers were constructed with statistical confidence measures and the saturated maps provided a fine map resolution of approximate 65 kb. Linking RH maps to the goat sequences showed that the assemblies of scaffolds/super-scaffolds were globally accurate. However, we observed certain flaws linked to the process of anchoring chromosome using conserved synteny with cattle. Chromosome assignments, long-range order, and orientation of the scaffolds were reassessed in an updated genome sequence version. We also present new results exploiting the updated goat genome sequence to understand genomic rearrangements and chromosome evolution between mammals during species radiations. The sequence architecture of rearrangement sites between the goat and cattle genomes presented abundant segmental duplication on regions of goat chromosome 9 and 14, as well as new insertions in homologous cattle genome regions. This complex interplay between duplicated sequences and Robertsonian translocations highlights the rearrangement mechanism of centromeric nonallelic homologous recombination (NAHR) in mammals. We observed that species-specific shifts in ANKRD26 gene duplication are coincident with breakpoint reuse in divergent lineages and this gene family may play a role in chromosome stabilization in chromosome evolution.

Conclusions

We generated dense maps of the complete whole goat genome. The chromosomal maps allowed us to anchor and orientate assembled genome scaffolds along the chromosomes, annotate chromosome rearrangements and thereby get a better understanding of the genome evolution of ruminants and other mammals.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-625) contains supplementary material, which is available to authorized users.  相似文献   

4.
Huang J  Ma L  Yang F  Fei SZ  Li L 《PloS one》2008,3(5):e2167

Background

In humans, chromosome fragile sites are regions that are especially prone to forming non-staining gaps, constrictions or breaks in one or both of the chromatids on metaphase chromosomes either spontaneously or following partial inhibition of DNA synthesis and have been well identified. So far, no plant chromosome fragile sites similar to those in human chromosomes have been reported.

Methods and Results

During the course of cytological mapping of rDNA on ryegrass chromosomes, we found that the number of chromosomes plus chromosome fragments was often more than the expected 14 in most cells for Lolium perenne L. cv. Player by close cytological examination using a routine chromosome preparation procedure. Further fluorescent in situ hybridization (FISH) using 45S rDNA as a probe indicated that the root-tip cells having more than a 14-chromosome plus chromosome fragment count were a result of chromosome breakage or gap formation in vitro (referred to as chromosome lesions) at 45S rDNA sites, and 86% of the cells exhibited chromosome breaks or gaps and all occurred at the sites of 45S rDNA in Lolium perenne L. cv. Player, as well as in L. multiflorum Lam. cv. Top One. Chromatin depletion or decondensation occurred at various locations within the 45S rDNA regions, suggesting heterogeneity of lesions of 45S rDNA sites with respect to their position within the rDNA region.

Conclusions

The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes, and thus we conclude that the high frequency of chromosome lesions in vitro in Lolium species is the result of the expression of 45S rDNA fragile sites. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are discussed.  相似文献   

5.

Key message

A cytogenetic map of wheat was constructed using FISH with cDNA probes. FISH markers detected homoeology and chromosomal rearrangements of wild relatives, an important source of genes for wheat improvement.

Abstract

To transfer agronomically important genes from wild relatives to bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) by induced homoeologous recombination, it is important to know the chromosomal relationships of the species involved. Fluorescence in situ hybridization (FISH) can be used to study chromosome structure. The genomes of allohexaploid bread wheat and other species from the Triticeae tribe are colinear to some extent, i.e., composed of homoeoloci at similar positions along the chromosomes, and with genic regions being highly conserved. To develop cytogenetic markers specific for genic regions of wheat homoeologs, we selected more than 60 full-length wheat cDNAs using BLAST against mapped expressed sequence tags and used them as FISH probes. Most probes produced signals on all three homoeologous chromosomes at the expected positions. We developed a wheat physical map with several cDNA markers located on each of the 14 homoeologous chromosome arms. The FISH markers confirmed chromosome rearrangements within wheat genomes and were successfully used to study chromosome structure and homoeology in wild Triticeae species. FISH analysis detected 1U-6U chromosome translocation in the genome of Aegilops umbellulata, showed colinearity between chromosome A of Ae. caudata and group-1 wheat chromosomes, and between chromosome arm 7S#3L of Thinopyrum intermedium and the long arm of the group-7 wheat chromosomes.  相似文献   

6.

Background

Human height is a complex trait with a strong genetic basis. Recently, a significant association between rare copy number variations (CNVs) and short stature has been identified, and candidate genes in these rare CNVs are being explored. This study aims to evaluate the association between mutations in ARID1B gene and short stature, both the syndromic and non-syndromic form.

Results

Based on a case-control study of whole genome chromosome microarray analysis (CMA), three overlapping CNVs were identified in patients with developmental disorders who exhibited short stature. ARID1B, a causal gene for Coffin Siris syndrome, is the only gene encompassed by all three CNVs. A following retrospective genotype-phenotype analysis based on a literature review confirmed that short stature is a frequent feature in those Coffin-Siris syndrome patients with ARID1B mutations. Mutation screening of ARID1B coding regions was further conducted in a cohort of 48 non-syndromic short stature patients,andfour novel missense variants including two de novo mutations were found.

Conclusion

These results suggest that haploinsufficient mutations of ARID1B are associated with syndromic short stature including Coffin-Siris syndrome and intellectual disability, while rare missense variants in ARID1B are associated with non-syndromic short stature. This study supports the notion that mutations in genes related to syndromic short stature may exert milder effect and contribute to short stature in the general population.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1898-1) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Individuality in the species composition of the vertebrate gut microbiota is driven by a combination of host and environmental factors that have largely been studied independently. We studied the convergence of these factors in a G10 mouse population generated from a cross between two strains to search for quantitative trait loci (QTLs) that affect gut microbiota composition or ileal Immunoglobulin A (IgA) expression in mice fed normal or high-fat diets.

Results

We found 42 microbiota-specific QTLs in 27 different genomic regions that affect the relative abundances of 39 taxa, including four QTL that were shared between this G10 population and the population previously studied at G4. Several of the G10 QTLs show apparent pleiotropy. Eight of these QTLs, including four at the same site on chromosome 9, show significant interaction with diet, implying that diet can modify the effects of some host loci on gut microbiome composition. Utilization patterns of IghV variable regions among IgA-specific mRNAs from ileal tissue are affected by 54 significant QTLs, most of which map to a segment of chromosome 12 spanning the Igh locus. Despite the effect of genetic variation on IghV utilization, we are unable to detect overlapping microbiota and IgA QTLs and there is no significant correlation between IgA variable pattern utilization and the abundance of any of the taxa from the fecal microbiota.

Conclusions

We conclude that host genetics and diet can converge to shape the gut microbiota, but host genetic effects are not manifested through differences in IgA production.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0552-6) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.

Background

The genome of the melon (Cucumis melo L.) double-haploid line DHL92 was recently sequenced, with 87.5 and 80.8% of the scaffold assembly anchored and oriented to the 12 linkage groups, respectively. However, insufficient marker coverage and a lack of recombination left several large, gene rich scaffolds unanchored, and some anchored scaffolds unoriented. To improve the anchoring and orientation of the melon genome assembly, we used resequencing data between the parental lines of DHL92 to develop a new set of SNP markers from unanchored scaffolds.

Results

A high-resolution genetic map composed of 580 SNPs was used to anchor 354.8 Mb of sequence, contained in 141 scaffolds (average size 2.5 Mb) and corresponding to 98.2% of the scaffold assembly, to the 12 melon chromosomes. Over 325.4 Mb (90%) of the assembly was oriented. The genetic map revealed regions of segregation distortion favoring SC alleles as well as recombination suppression regions coinciding with putative centromere, 45S, and 5S rDNA sites. New chromosome-scale pseudomolecules were created by incorporating to the previous v3.5 version an additional 38.3 Mb of anchored sequence representing 1,837 predicted genes contained in 55 scaffolds. Using fluorescent in situ hybridization (FISH) with BACs that produced chromosome-specific signals, melon chromosomes that correspond to the twelve linkage groups were identified, and a standardized karyotype of melon inbred line T111 was developed.

Conclusions

By utilizing resequencing data and targeted SNP selection combined with a large F2 mapping population, we significantly improved the quantity of anchored and oriented melon scaffold genome assembly. Using genome information combined with FISH mapping provided the first cytogenetic map of an inodorus melon type. With these results it was possible to make inferences on melon chromosome structure by relating zones of recombination suppression to centromeres and 45S and 5S heterochromatic regions. This study represents the first steps towards the integration of the high-resolution genetic and cytogenetic maps with the genomic sequence in melon that will provide more information on genome organization and allow for the improvement of the melon genome draft sequence.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1196-3) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Homoeologous sequences pose a particular challenge if bacterial artificial chromosome (BAC) contigs shall be established for specific regions of an allopolyploid genome. Single nucleotide polymorphisms (SNPs) differentiating between homoeologous genomes (intergenomic SNPs) may represent a suitable screening tool for such purposes, since they do not only identify homoeologous sequences but also differentiate between them.

Results

Sequence alignments between Brassica rapa (AA) and Brassica oleracea (CC) sequences mapping to corresponding regions on chromosomes A1 and C1, respectively were used to identify single nucleotide polymorphisms between the A and C genomes. A large fraction of these polymorphisms was also present in Brassica napus (AACC), an allopolyploid species that originated from hybridisation of A and C genome species. Intergenomic SNPs mapping throughout homoeologous chromosome segments spanning approximately one Mbp each were included in Illumina’s GoldenGate® Genotyping Assay and used to screen multidimensional pools of a Brassica napus bacterial artificial chromosome library with tenfold genome coverage. Based on the results of 50 SNP assays, a BAC contig for the Brassica napus A subgenome was established that spanned the entire region of interest. The C subgenome region was represented in three BAC contigs.

Conclusions

This proof-of-concept study shows that sequence resources of diploid progenitor genomes can be used to deduce intergenomic SNPs suitable for multiplex polymerase chain reaction (PCR)-based screening of multidimensional BAC pools of a polyploid organism. Owing to their high abundance and ease of identification, intergenomic SNPs represent a versatile tool to establish BAC contigs for homoeologous regions of a polyploid genome.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-560) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

The papaya Y chromosome has undergone a degenerative expansion from its ancestral autosome, as a consequence of recombination suppression in the sex determining region of the sex chromosomes. The non-recombining feature led to the accumulation of repetitive sequences in the male- or hermaphrodite-specific regions of the Y or the Yh chromosome (MSY or HSY). Therefore, repeat composition and distribution in the sex determining region of papaya sex chromosomes would be informative to understand how these repetitive sequences might be involved in the early stages of sex chromosome evolution.

Results

Detailed composition of interspersed, sex-specific, and tandem repeats was analyzed from 8.1 megabases (Mb) HSY and 5.3 Mb corresponding X chromosomal regions. Approximately 77% of the HSY and 64% of the corresponding X region were occupied by repetitive sequences. Ty3-gypsy retrotransposons were the most abundant interspersed repeats in both regions. Comparative analysis of repetitive sequences between the sex determining region of papaya X chromosome and orthologous autosomal sequences of Vasconcellea monoica, a close relative of papaya lacking sex chromosomes, revealed distinctive differences in the accumulation of Ty3-Gypsy, suggesting that the evolution of the papaya sex determining region may accompany Ty3-Gypsy element accumulation. In total, 21 sex-specific repeats were identified from the sex determining region; 20 from the HSY and one from the X. Interestingly, most HSY-specific repeats were detected in two regions where the HSY expansion occurred, suggesting that the HSY expansion may result in the accumulation of sex-specific repeats or that HSY-specific repeats might play an important role in the HSY expansion. The analysis of simple sequence repeats (SSRs) revealed that longer SSRs were less abundant in the papaya sex determining region than the other chromosomal regions.

Conclusion

Major repetitive elements were Ty3-gypsy retrotransposons in both the HSY and the corresponding X. Accumulation of Ty3-Gypsy retrotransposons in the sex determining region of papaya X chromosome was significantly higher than that in the corresponding region of V. monoica, suggesting that Ty3-Gypsy could be crucial for the expansion and evolution of the sex determining region in papaya. Most sex-specific repeats were located in the two HSY expansion regions.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-335) contains supplementary material, which is available to authorized users.  相似文献   

12.

Key message

High-resolution multiplex oligonucleotide FISH revealed the frequent occurrence of structural chromosomal rearrangements and polymorphisms in widely grown wheat cultivars and their founders.

Abstract

Over 2000 wheat cultivars including 19 founders were released and grown in China from 1949 to 2000. To understand the impact of breeding selection on chromosome structural variations, high-resolution karyotypes of Chinese Spring (CS) and 373 Chinese cultivars were developed and compared by FISH (fluorescence in situ hybridization) using an oligonucleotide multiplex probe based on repeat sequences. Among them, 148 (39.7%) accessions carried 14 structural rearrangements including three single translocations (designated as T), eight reciprocal translocations (RT), one pericentric inversion (perInv), and two combined variations having both the deletion and single translocations. Five rearrangements were traced to eight founders, including perInv 6B detected in 57 cultivars originating from Funo, Abbondanza, and Fan 6, T 1RS?1BL in 47 cultivars derived from the Lovrin series, RT 4AS?4AL-1DS/1DL?1DS-4AL in 31 varieties from Mazhamai and Bima 4, RT 1RS?7DL/7DS?1BL in three cultivars was from Aimengniu, and RT 5BS?5BL-5DL/5DS?5DL-5BL was only detected in Youzimai. In addition to structural rearrangements, 167 polymorphic chromosome blocks (defined as unique signal patterns of oligonucleotide repeat probes distributed within chromosomes) were identified, and 59 were present in one or more founders. Some specific types were present at high frequencies indicating selective blocks in Chinese wheat varieties. All cultivars and CS were clustered into four groups and 15 subgroups at chromosome level. Common block patterns occurred in the same subgroup. Origin, geographic distribution, probable adaptation to specific environments, and potential use of these chromosomal rearrangements and blocks are discussed.
  相似文献   

13.

Main conclusion

This study explored 6P chromosomal translocations in wheat, and determined the effects of 6P intercalary chromosome segments on kernel number per wheat spike. Exploiting and utilising gene(s) from wild relative species has become an essential strategy for wheat crop improvement. In the translocation line Pubing2978, the intercalary 6P chromosome segment from Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP) carried valuable multi-kernel gene(s) and was selected from the offspring of the common wheat plant Fukuho and the irradiated wheat-A. cristatum 6P disomic substitution line 4844-8. Genomic in situ hybridisation (GISH), dual-colour fluorescence in situ hybridisation (FISH), and molecular markers were used to detect the small segmental 6P chromosome in the wheat background and its translocation breakpoint. Cytological studies demonstrated that Pubing2978 was a T1AS-6PL-1AS·1AL intercalary translocation with 42 chromosomes. The breakpoint was located near the centromeric region on the wheat chromosome 1AS and was flanked by the markers SSR12 and SSR283 based on an F2 linkage map. The genotypic data, combined with the phenotypic information, implied that A. cristatum 6P chromosomal segment plays an important role in regulating the kernel number per spike (KPS). By comparison, the mean value of KPS in plants with translocations was approximately 10 higher than that in plants without translocations in three segregated populations. Moreover, the improvement in KPS was likely achieved by increasing both the spikelet number per spike (SNS) and the kernel number per spikelet. These excellent agronomic traits laid the foundation for further investigation of valuable genes and make the Pubing2978 line a promising germplasm for wheat breeding.
  相似文献   

14.
Summary Chromosome breaks, mostly fragmentations and some translocations were induced in Bellevalia romana (2n=8) by N-nitroso-N-methylurea (NMH, 1499 breaks), N,N-dinitroso-N,N-dimethylterephthalamide (NMT, 1516 breaks) and 1-Nitrosoimidazolidone-2 (NIL, 2055 breaks).The mitotic rate is considerably reduced only by NMT; NIL induced the highest number of fragmentation and also, in contrast to NMH and NMT, about 3% translocations.There was no difference in the distribution over the four chromosome types of all the braks induced by NMH, NMT and NIL; fragmentations of the centromeres were more frequent than fragmentations of the chromosome arms; these peculiarities and the distribution of centromere-breaks correspond to the distributions, induced by agents investigated earlier.It is only the distribution of breaks over the three regions of chromosome arms, proximal, median and terminal which is mainly determined by the chemical nature of the agent; NMT shows an equidistribution of breaks over the regions of all chromosome arms, NMH and NIL revealed a pronounced decrease of the breakage frequency from the centromere-region towards the chromosome end in most of the chromosome arms. The breakage patterns induced by these two substances were not identical, in the shorter arm of the A-chromosome, NIL induced a pattern with the highest number of breaks in the median region.In the discussion the breakage patterns of 5 nitrosamides, nitrous acid, methylphenylnitrosamine, methylmethanesulfonate, diethylsulfate, and X-rays were compared. The methylating nitrosamides induced two opposite patterns: Breaks induced by the stable, slowly hydrolysing NMT and NMU tended to be equally distributed over the regions of the chromosome arms. The breaksinduced by rapidly hydrolysing NMH and NIL had the common property of following gradients of breakage frequencies.In conclusion, there have been evaluated three main factors, determining the kind of breakage patterns: the transport-and active form of the substances used, and the velocity of their degradation in aqueous solution.  相似文献   

15.

Background  

Chromosomal rearrangements, such as translocations and inversions, are recurrent phenomena during evolution, and both of them are involved in reproductive isolation and speciation. To better understand the molecular basis of chromosome rearrangements and their part in karyotype evolution, we have investigated the history of human chromosome 17 by comparative fluorescence in situ hybridization (FISH) and sequence analysis.  相似文献   

16.

Background

Mouse chromosome 2 is linked to growth and body fat phenotypes in many mouse crosses. With the goal to identify the underlying genes regulating growth and body fat on mouse chromosome 2, we developed five overlapping subcongenic strains that contained CAST/EiJ donor regions in a C57BL/6Jhg/hg background (hg is a spontaneous deletion of 500 Kb on mouse chromosome 10). To fine map QTL on distal mouse chromosome 2 a total of 1,712 F2 mice from the five subcongenic strains, plus 278 F2 mice from the HG2D founder congenic strain were phenotyped and analyzed. Interval mapping (IM) and composite IM (CIM) were performed on body weight and body fat traits on a combination of SNP and microsatellite markers, which generated a high-density genotyping panel.

Results

Phenotypic analysis and interval mapping of total fat mass identified two QTL on distal mouse chromosome 2. One QTL between 150 and 161 Mb, Fatq2a, and the second between 173.3 and 175.6 Mb, Fatq2b. The two QTL reside in different congenic strains with significant total fat differences between homozygous cast/cast and b6/b6 littermates. Both of these QTL were previously identified only as a single QTL affecting body fat, Fatq2. Furthermore, through a novel approach referred here as replicated CIM, Fatq2b was mapped to the Gnas imprinted locus.

Conclusions

The integration of subcongenic strains, high-density genotyping, and CIM succesfully partitioned two previously linked QTL 20 Mb apart, and the strongest QTL, Fatq2b, was fine mapped to a ~2.3 Mb region interval encompassing the Gnas imprinted locus.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1191-8) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

In flowering plants it has been shown that de novo genome assemblies of different species and genera show a significant drop in the proportion of alignable sequence. Within a plant species, however, it is assumed that different haplotypes of the same chromosome align well. In this paper we have compared three de novo assemblies of potato chromosome 5 and report on the sequence variation and the proportion of sequence that can be aligned.

Results

For the diploid potato clone RH89-039-16 (RH) we produced two linkage phase controlled and haplotype-specific assemblies of chromosome 5 based on BAC-by-BAC sequencing, which were aligned to each other and compared to the 52 Mb chromosome 5 reference sequence of the doubled monoploid clone DM 1–3 516 R44 (DM). We identified 17.0 Mb of non-redundant sequence scaffolds derived from euchromatic regions of RH and 38.4 Mb from the pericentromeric heterochromatin. For 32.7 Mb of the RH sequences the correct position and order on chromosome 5 was determined, using genetic markers, fluorescence in situ hybridisation and alignment to the DM reference genome. This ordered fraction of the RH sequences is situated in the euchromatic arms and in the heterochromatin borders. In the euchromatic regions, the sequence collinearity between the three chromosomal homologs is good, but interruption of collinearity occurs at nine gene clusters. Towards and into the heterochromatin borders, absence of collinearity due to structural variation was more extensive and was caused by hemizygous and poorly aligning regions of up to 450 kb in length. In the most central heterochromatin, a total of 22.7 Mb sequence from both RH haplotypes remained unordered. These RH sequences have very few syntenic regions and represent a non-alignable region between the RH and DM heterochromatin haplotypes of chromosome 5.

Conclusions

Our results show that among homologous potato chromosomes large regions are present with dramatic loss of sequence collinearity. This stresses the need for more de novo reference assemblies in order to capture genome diversity in this crop. The discovery of three highly diverged pericentric heterochromatin haplotypes within one species is a novelty in plant genome analysis. The possible origin and cytogenetic implication of this heterochromatin haplotype diversity are discussed.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1578-1) contains supplementary material, which is available to authorized users.  相似文献   

18.
Kennison JA 《Genetics》1981,98(3):529-548
Cytological and genetic analyses of 121 translocations between the Y chromosome and the centric heterochromatin of the X chromosome have been used to define and localize six regions on the Y chromosome of Drosophila melanogaster necessary for male fertility. These regions are associated with nonfluorescent blocks of the Y chromosome, as revealed using Hoechst 33258 or quinacrine staining. Each region appears to contain but one functional unit, as defined by failure of complementation among translocations with breakpoints within the same block. The distribution of translocation breakpoints examined appears to be nonrandom, in that breaks occur preferentially in the nonfluorescent blocks and not in the large fluorescent blocks.  相似文献   

19.
Although chromosomal deletions and inversions are important in cancer, conventional methods for detecting DNA rearrangements require laborious indirect assays. Here we develop fluorescent reporters to rapidly quantify CRISPR/Cas9-mediated deletions and inversions. We find that inversion depends on the non-homologous end-joining enzyme LIG4. We also engineer deletions and inversions for a 50 kb Pten genomic region in mouse liver. We discover diverse yet sequence-specific indels at the rearrangement fusion sites. Moreover, we detect Cas9 cleavage at the fourth nucleotide on the non-complementary strand, leading to staggered instead of blunt DNA breaks. These reporters allow mechanisms of chromosomal rearrangements to be investigated.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0680-7) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

The availability of multiple avian genome sequence assemblies greatly improves our ability to define overall genome organization and reconstruct evolutionary changes. In birds, this has previously been impeded by a near intractable karyotype and relied almost exclusively on comparative molecular cytogenetics of only the largest chromosomes. Here, novel whole genome sequence information from 21 avian genome sequences (most newly assembled) made available on an interactive browser (Evolution Highway) was analyzed.

Results

Focusing on the six best-assembled genomes allowed us to assemble a putative karyotype of the dinosaur ancestor for each chromosome. Reconstructing evolutionary events that led to each species’ genome organization, we determined that the fastest rate of change occurred in the zebra finch and budgerigar, consistent with rapid speciation events in the Passeriformes and Psittaciformes. Intra- and interchromosomal changes were explained most parsimoniously by a series of inversions and translocations respectively, with breakpoint reuse being commonplace. Analyzing chicken and zebra finch, we found little evidence to support the hypothesis of an association of evolutionary breakpoint regions with recombination hotspots but some evidence to support the hypothesis that microchromosomes largely represent conserved blocks of synteny in the majority of the 21 species analyzed. All but one species showed the expected number of microchromosomal rearrangements predicted by the haploid chromosome count. Ostrich, however, appeared to retain an overall karyotype structure of 2n = 80 despite undergoing a large number (26) of hitherto un-described interchromosomal changes.

Conclusions

Results suggest that mechanisms exist to preserve a static overall avian karyotype/genomic structure, including the microchromosomes, with widespread interchromosomal change occurring rarely (e.g., in ostrich and budgerigar lineages). Of the species analyzed, the chicken lineage appeared to have undergone the fewest changes compared to the dinosaur ancestor.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1060) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号