首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We previously showed that polyamines are required for proliferation and migration both in vivo and in a cultured intestinal epithelial cell (IEC-6) model. Wounding of the IEC-6 monolayer induced transient ERK activation, which was further enhanced by EGF. EGF stimulated migration in control and polyamine-depleted cells, but the degree of stimulation was significantly less in polyamine-depleted cells. Inhibition of MEK1 inhibited basal as well as EGF-induced ERK activation and migration. Expression of constitutively active (CA)-MEK and dominant-negative (DN)-MEK had significant effects on F-actin structure. CA-MEK increased stress fiber and lamellipodia formation, while DN-MEK showed loss of stress fibers and abnormal actin cytoskeletal structure. Unlike EGF, CA-MEK significantly increased migration of both control and polyamine-depleted cells. The most important and significant finding in this study was that polyamine depletion caused localization of Rac1 and RhoA to the nuclear as well as perinuclear regions. Interestingly, CA-MEK completely reversed the subcellular distribution of Rac1 and RhoA proteins in polyamine-depleted cells. Polyamine depletion increased Rac1 in the nuclear fraction and decreased it in the cytoplasmic and membrane fractions of vector-transfected cells. CA-MEK prevented accumulation of Rac1 in the nucleus. Polyamine depletion significantly decreased Rac1 activity during 6-h migration in vector-transfected cells. Cells transfected with CA-MEK had almost identical levels of activated Rac1 in all three groups. These results suggest that polyamine depletion prevents activation of Rac1 and RhoA by sequestering them to the nucleus and that expression of constitutively active MEK reverses this effect, creating the cellular localization required for activation. epidermal growth factor; extracellular signal-regulated kinase; IEC-6 cells  相似文献   

2.
Integrin binding to the extracellular matrix (ECM) activated Rho GTPases, Src, and focal adhesion kinase in intestinal epithelial cells (IEC)-6. Polyamine depletion inhibited activities of Rac1, RhoA, and Cdc42 and thereby migration. However, constitutively active (CA) Rac1 expression abolished the inhibitory effect of polyamine depletion, indicating that polyamines are involved in a process upstream of Rac1. In the present study, we examined the role of polyamines in the regulation of the guanine nucleotide exchange factor, diffuse B-cell lymphoma (Dbl), for Rho GTPases. Polyamine depletion decreased the level as well as the activation of Dbl protein. Dbl knockdown by siRNA altered cytoskeletal structure and decreased Rac1 activity and migration. Cells expressing CA-Dbl increased migration, Rac1 activity, and proliferation. CA-Dbl restored migration in polyamine-depleted cells by activating RhoA, Rac1, and Cdc42. CA-Dbl caused extensive reorganization of the F-actin cortex into stress fibers. Inhibition of Rac1 by NSC23766 significantly decreased migration of vector-transfected cells and CA-Dbl-transfected cells. However, the inhibition of migration was significantly higher in the vector-transfected cells compared with that seen in the CA-Dbl-transfected cells. Dbl localized in the perinuclear region in polyamine-depleted cells, whereas it localized with the stress fibers in control cells. CA-Dbl localized with stress fibers in both the control and polyamine-depleted cells. These results suggest that polyamines regulate the activation of Dbl, a membrane-proximal process upstream of Rac1.  相似文献   

3.
Polyamine depletion with the ornithine decarboxylase inhibitor alpha-difluoromethyl ornithine (DFMO), prevents Rac1 activation causing the formation of a thick actin cortex at the cell periphery and inhibits migration of intestinal epithelial cells. In the present study, we demonstrate that MEK activation by EGF increased Rac1 activation, dissociation of intercellular contacts, and migration in both control and polyamine-depleted cells, while U0126, a specific inhibitor of MEK1, prevented disruption of junctions as well as EGF-induced Rac1 activation. Constitutively active MEK1 (CA-MEK) expression altered cell-cell contacts in control and polyamine depleted cells. The expression of constitutively active Rac1 (CA-Rac1) restored beta-catenin to the cell periphery and prevented the formation of actin cortex and caused the appearance of F-actin stress fibers in polyamine-depleted cells. Inhibition of Rac activation by NSC23766, a specific inhibitor of Tiam1, an upstream guanidine nucleotide exchange factor for Rac1, reproduced the beta-catenin localization and actin structure of polyamine-depleted cells. Tiam1 localized more extensively with beta-catenin at the cell periphery in CA-Rac1 cells compared to vector cells. Polyamine depletion decreased the expression of E-cadherin to a greater extent compared to beta-catenin. Subcellular fractionation further confirmed our immuno-localization and western blotting observations. These data suggest that EGF acting through MEK1/ERK to activate Rac1 regulates cell-cell contacts. Thus, decreased migration in polyamine depleted cells may be due to the inhibition of Tiam1 activation of Rac1 and the subsequent decreased expression of beta-catenin and E-cadherin leading to reduced cell-cell contacts.  相似文献   

4.
Cell migration is important to the integrity of the gastrointestinal tract for the normal movement of cells from crypt to villi and the healing of wounds. Polyamines are essential to cell migration, mucosal restitution, and, hence, healing. Polyamine depletion by α-difluoromethyl ornithine (DFMO) inhibited migration by decreasing lamellipodia and stress fiber formation and preventing the activation of Rho-GTPases. Polyamine depletion increased the association of the thick F-actin cortex with phosphorylated myosin regulatory light chain (pMRLC). In this study, we determined why MRLC is constitutively phosphorylated as part of the actin cortex. Inhibition of myosin light chain kinase (MLCK) decreased RhoA and Rac1 activities and significantly inhibited migration. Polyamine depletion increased phosphorylation of MRLC (Thr18/Ser19) and stabilized the actin cortex and focal adhesions. The Rho-kinase inhibitor Y27632 increased spreading and migration by decreasing the phosphorylation of MRLC, remodeling focal adhesions, and by activating Rho-GTPases. Thus phosphorylation of MRLC appears to be the rate-limiting step during the migration of IEC-6 cells. In addition, increased localization of RhoA with the actin cortex in polyamine-depleted cells appears to activate Rho-kinase. In the absence of polyamines, activated Rho-kinase phosphorylates myosin phosphatase targeting subunit 1 (MYPT1) at serine-668 leading to its inactivation and preventing the recruitment of phosphatase (protein phosphastase, PP1cδ) to the actomyosin cortex. In this condition, MRLC is constitutively phosphorylated and cycling does not occur. Thus activated myosin binds F-actin stress fibers and prevents focal adhesion turnover, Rho-GTPase activation, and the remodeling of the cytoskeleton required for migration.  相似文献   

5.
The rapid migration of intestinal epithelial cells is important to the healing of mucosal ulcers and wounds. This cell migration requires the presence of polyamines and the activation of RhoA. RhoA activity, however, is not sufficient for migration because polyamine depletion inhibited the migration of IEC-6 cells expressing constitutively active RhoA. The current study examines the role of Rac1 and Cdc42 in cell migration and whether their activities are polyamine-dependent. Polyamine depletion with alpha-difluoromethylornithine inhibited the activities of RhoA, Rac1, and Cdc42. This inhibition was prevented by supplying exogenous putrescine in the presence of alpha-difluoromethylornithine. IEC-6 cells transfected with constitutively active Rac1 and Cdc42 migrated more rapidly than vector-transfected cells, whereas cells expressing dominant negative Rac1 and Cdc42 migrated more slowly. Polyamine depletion had no effect on the migration of cells expressing Rac1 and only partially inhibited the migration of those expressing Cdc42. Although polyamine depletion caused the disappearance of actin stress fibers in cells transfected with empty vector, it had no effect on cells expressing Rac1. Constitutively active Rac1 increased RhoA and Cdc42 activity in both normal and polyamine-depleted cells. These results demonstrate that Rac1, RhoA, and Cdc42 are required for optimal epithelial cell migration and that Rac1 activity is sufficient for cell migration in the absence of polyamines due to its ability to activate RhoA and Cdc42 as well as its own effects on the process of cell migration. These data imply that the involvement of polyamines in cell migration occurs either at Rac1 itself or upstream from Rac1.  相似文献   

6.
Rac1 is an intracellular signal transducer regulating a variety of cell functions. Previous studies by overexpression of dominant-negative or constitutively active mutants of Rac1 in clonal cell lines have established that Rac1 plays a key role in actin lamellipodia induction, cell-matrix adhesion, and cell anoikis. In the present studies, we have examined the cellular behaviors of Rac1 gene-targeted primary mouse embryonic fibroblasts (MEFs) after Cre recombinase-mediated deletion of Rac1 gene. Rac1-null MEFs became contracted and elongated in morphology and were defective in lamellipodia formation, cell spreading, cell-fibronectin adhesion, and focal contact formation in response to platelet-derived growth factor or serum. Unexpectedly, deletion of Rac1 also abolished actin stress fibers in the cells without detectable alteration of endogenous RhoA activity. Although the expression and/or activation status of focal adhesion complex components such as Src, FAK, and vinculin were not affected by Rac1 deletion, the number and size of adhesion plaques were significantly reduced, and the molecular complex between Src, FAK, and vinculin was dissembled in Rac1-null cells. Overexpression of an active RhoA mutant or ROK failed to rescue the stress fiber and adhesion plaque defects of the Rac1-null cells. Although Rac1 deletion caused a significant reduction in phospho-PAK1, -AKT, and -ERK under serum stimulation, reconstitution of active PAK1, but not AKT or MEK1, was able to rescue the actin cytoskeleton and adhesion phenotypes of the Rac1-deficient cells. Furthermore, Rac1 deletion led to a marked increase in spontaneous apoptosis that could be rescued by active PAK1, AKT, or MEK1 expression. Our results obtained from gene-targeted primary MEFs indicate that Rac1 is essential not only for lamellipodia induction but also for the RhoA-regulated actin stress fiber and focal adhesion complex formation and that Rac1 is involved in cell survival regulation through anoikis-dependent as well as -independent mechanisms.  相似文献   

7.
Polyamines are essential to the migration ofepithelial cells in the intestinal mucosa. Cells depleted of polyaminesdo not attach as rapidly to the extracellular matrix and do not form the actin stress fibers essential for migration. Because both attachment and stress fiber formation depend on integrin signaling andthe formation of focal adhesions, we examined these and related processes in polyamine-depleted IEC-6 cells. There was general decreased tyrosine phosphorylation of focal adhesion kinase (FAK), and,specifically, decreased phosphorylation of Tyr-925, the paxillin binding site. In control cells, FAK phosphorylation was rapid afterattachment to the extracellular matrix, while attached cells depletedof polyamines had significantly delayed phosphorylation. FAK activitywas also significantly inhibited in polyamine-depleted cells as was thephosphorylation of paxillin. Polyamine-depleted cells failed to spreadnormally after attachment, and immunocytochemistry showed littlecolocalization of FAK and actin compared with controls. Focal adhesioncomplex formation was greatly reduced in the absence of polyamines.These data suggest that defective integrin signaling may, at least inpart, account for the decreased rates of attachment, actin stress fiberformation, spreading, and migration observed in polyamine-depleted cells.

  相似文献   

8.
9.
The fibrillar collagen I gel induced the formation of numerous dendritic cell-like protrusions (cell spikes) from the cell body, whereas monomeric collagen I induced typical cell spreading with filopodia and lamellipodia in skin fibroblasts. Peripheral, not central stress fibers appeared upon adhesion to fibrillar collagen gel, whereas both types of fibers were evident upon adhesion to monomeric collagen. Microtubules and vimentin filaments were elongated inside stress fibers along the terminal tip of cell spikes. Spike formation was totally inhibited by nocodazole and severely delayed by cytochalasin D. This suggests that cell spike formation is dependent on microtubules rather than on F-actin. We then investigated the intracellular signaling responsible for cytoskeleton organization to identify the key factor that induces cell spike morphology. During cell spike formation, FAK and CAS were activated. More CAS was activated in cells on fibrillar collagen gel than on the monomeric form, whereas FAK was activated to the same level on either. At 90 min of culture, Rac1 was activated in cells on monomeric collagen I, whereas Cdc42, Rac1 and RhoA were activated in cells on fibrillar collagen gel. These results suggest that microtubule organization via CAS and small GTPases is important for the cell spike formation that is involved in collagen gel contraction and in wound retraction in skin.  相似文献   

10.
Chemokines such as SDF-1α play a crucial role in orchestrating T lymphocyte polarity and migration via polymerization and reorganization of the F-actin cytoskeleton, but the role of actin-associated proteins in this process is not well characterized. In this study, we have investigated a role for L-plastin, a leukocyte-specific F-actin-bundling protein, in SDF-1α-stimulated human T lymphocyte polarization and migration. We found that L-plastin colocalized with F-actin at the leading edge of SDF-1α-stimulated T lymphocytes and was also phosphorylated at Ser(5), a site that when phosphorylated regulates the ability of L-plastin to bundle F-actin. L-plastin phosphorylation was sensitive to pharmacological inhibitors of protein kinase C (PKC), and several PKC isoforms colocalized with L-plastin at the leading edge of SDF-1α-stimulated lymphocytes. However, PKC ζ, an established regulator of cell polarity, was the only isoform that regulated L-plastin phosphorylation. Knockdown of L-plastin expression with small interfering RNAs demonstrated that this protein regulated the localization of F-actin at the leading edge of chemokine-stimulated cells and was also required for polarization, lamellipodia formation, and chemotaxis. Knockdown of L-plastin expression also impaired the Rac1 activation cycle and Akt phosphorylation in response to SDF-1α stimulation. Furthermore, L-plastin also regulated SDF-1α-mediated lymphocyte migration on the integrin ligand ICAM-1 by influencing velocity and persistence, but in a manner that was independent of LFA-1 integrin activation or adhesion. This study, therefore, demonstrates an important role for L-plastin and the signaling pathways that regulate its phosphorylation in response to chemokines and adds L-plastin to a growing list of proteins implicated in T lymphocyte polarity and migration.  相似文献   

11.
Endothelial cells and the regulation of their migration are of prime importance in many physiological and pathological processes such as angiogenesis. RhoA, an important Rho family member known to trigger actin reorganization, has been shown to mediate the formation of focal adhesions and stress fibers in quiescent fibroblasts. However, recent studies have emphasized its functional diversity and its implication in migration or metastatic processes in different cell types other than fibroblasts. Its role in endothelial cells is little known. In this study, we were interested by analyzing in human endothelial cells the subcellular redistribution of endogenous RhoA and the reorganization of cytoskeletal actin induced by two important extracellular matrix proteins, collagen and fibronectin. This paper shows a translocation of RhoA and its association with cortical actin in focal contact domains at membrane ruffles and at lamellipodia of spread or migrating endothelial cells, in the absence of any soluble mitogen stimulation. Furthermore, RhoA was found colocalized with ezrin, a member of the ERM family proteins newly described as important membrane-actin cytoskeleton linkers, at early membrane ruffles of endothelial cells spread on collagen but not on fibronectin. The present study points out that extracellular matrix, depending on the nature of its components, may promote distinct assemblies of focal contact constitutive proteins and strongly suggests that endothelial RhoA, like Rac1, may be an important mediator of matrix signaling pathway regulating endothelial cell adhesiveness and motility, independently of growth factor stimulation.  相似文献   

12.
There is increasing evidence that the transforming DNA tumor virus simian virus 40 (SV40) is associated with human malignancies. SV40 small tumor antigen (small t) interacts with endogenous serine/threonine protein phosphatase 2A (PP2A) and is required for the transforming activity of SV40 in epithelial cells of the lung and kidney. Here, we show that expression of SV40 small t in epithelial MDCK cells induces acute morphological changes and multilayering. Significantly, it also causes severe defects in the biogenesis and barrier properties of tight junctions (TJs) but does not prevent formation of adherens junctions. Small t-induced TJ defects are associated with a loss of PP2A from areas of cell-cell contact; altered distribution and reduced amounts of the TJ proteins ZO-1, occludin, and claudin-1; and marked disorganization of the actin cytoskeleton. Small t-mediated F-actin rearrangements encompass increased Rac-induced membrane ruffling and lamellipodia, Cdc42-initiated filopodia, and loss of Rho-dependent stress fibers. Indeed, these F-actin changes coincide with elevated levels of Rac1 and Cdc42 and decreased amounts of RhoA in small t-expressing cells. Notably, these cellular effects of small t are dependent on its interaction with endogenous PP2A. Thus, our findings provide the first evidence that, in polarized epithelial cells, expression of small t alone is sufficient to induce deregulation of Rho GTPases, F-actin, and intercellular adhesion, through interaction with endogenous PP2A. Because defects in the actin cytoskeleton and TJ disruption have been linked to loss of cell polarity and tumor invasiveness, their deregulation by PP2A and small t likely contributes to the role of SV40 in epithelial cell transformation.  相似文献   

13.
Activation of the hepatocyte growth factor (HGF) receptor in epithelial cells results in lamellipodia protrusion, spreading, migration, and tubule formation. We have previously reported that these morphogenic effects are dependent on MAPK activation at focal adhesions. In the present study we demonstrate that activated ERK phosphorylates paxillin on serine 83 and that mutation of this site eliminates HGF-stimulated increased association of paxillin and FAK in subconfluent cells. Failure to activate FAK at focal adhesions results in a loss of FAK-PI 3-kinase association and the marked reduction of Rac activation after HGF stimulation. Expression of paxillin mutants that disrupt ERK association or phosphorylation inhibits HGF-induced cell spreading, migration, and tubulogenesis. These data demonstrate that the paxillin-MAPK complex serves as a central regulator of HGF-stimulated FAK and Rac activation in the vicinity of focal adhesions, thus promoting the rapid focal adhesion turnover and lamellipodia extension that are required for migratory and tubulogenic responses.  相似文献   

14.
Actincytoskeletal disruption is a hallmark of ischemic injury and ATPdepletion in a number of cell types, including renal epithelial cells.We manipulated Rho GTPase signaling by transfection and microinjectionin LLC-PK proximal tubule epithelial cells and observed actincytoskeletal organization following ATP depletion or recovery byconfocal microscopy and quantitative image analysis. ATP depletionresulted in disruption of stress fibers, cortical F-actin, and apicalactin bundles. Constitutively active RhoV14 prevented disruption ofstress fibers and cortical F-actin during ATP depletion and enhancedthe rate of stress fiber reassembly during recovery. Conversely, theRho inhibitor C3 or dominant negative RhoN19 prevented recovery ofF-actin assemblies upon repletion. Actin bundles in the apicalmicrovilli and cytosolic F-actin were not affected by Rho signaling.Assembly of vinculin and paxillin into focal adhesions was disrupted byATP depletion, and constitutively active RhoV14, although protectingstress fibers from disassembly, did not prevent dispersion of vinculinand paxillin, resulting in uncoupling of stress fiber and focaladhesion assembly. We propose that ATP depletion causes Rhoinactivation during ischemia and that recovery of normalcellular architecture and function requires Rho.

  相似文献   

15.
Intracellular polyamine levels are highly regulated by the activity of ornithine decarboxylase (ODC), which catalyzes the first rate-limiting reaction in polyamine biosynthesis, producing putrescine, which is subsequently converted to spermidine and spermine. We have shown that polyamines regulate proliferation, migration, and apoptosis in intestinal epithelial cells. Polyamines regulate key signaling events at the level of the EGFR and Src. However, the precise mechanism of action of polyamines is unknown. In the present study, we demonstrate that ODC localizes in lamellipodia and in adhesion plaques during cell spreading. Spermine regulates EGF-induced migration by modulating the interaction of the EGFR with Src. The EGFR interacted with integrin β3, Src, and focal adhesion kinase (FAK). Active Src (pY418-Src) localized with FAK during spreading and migration. Spermine prevented EGF-induced binding of the EGFR with integrin β3, Src, and FAK. Activation of Src and FAK was necessary for EGF-induced migration in HEK293 cells. EGFR-mediated Src activation in live HEK293 cells using a FRET based Src reporter showed that polyamine depletion significantly increased Src kinase activity. In vitro binding studies showed that spermine directly binds Src, and preferentially interacts with the SH2 domain of Src. The physical interaction between Src and the EGFR was severely attenuated by spermine. Therefore, spermine acts as a molecular switch in regulating EGFR-Src coupling both physically and functionally. Upon activation of the EGFR, integrin β3, FAK and Src are recruited to EGFR leading to the trans-activation of both the EGFR and Src and to the Src-mediated phosphorylation of FAK. The activation of FAK induced Rho-GTPases and subsequently migration. This is the first study to define mechanistically how polyamines modulate Src function at the molecular level.  相似文献   

16.
Enteroaggregative Escherichia coli (EAEC) is an emerging diarrheal pathogen. Many EAEC strains produce the plasmid-encoded toxin (Pet), which exerts cytotoxic effects on human intestinal tissue. Pet-intoxicated HEp-2 cells exhibit rounding and detachment from the substratum, accompanied by loss of F-actin stress fibers and condensation of the spectrin-containing membrane cytoskeleton. Although studies suggest that Pet directly cleaves spectrin, it is not known whether this is the essential mode of action of the toxin. In addition, the effects of Pet on cytoskeletal elements other than actin and spectrin have not been reported. Here, we demonstrate by immunofluorescence that upon Pet intoxication, HEp-2 and HT29 cells lose focal adhesion complexes (FAC), a process that includes the redistribution of focal adhesion kinase (FAK), α-actinin, paxillin, vinculin, F-actin, and spectrin itself. This redistribution was coupled with the depletion of phosphotyrosine labeling at FACs. Immunoblotting and immunoprecipitation experiments revealed that FAK was tyrosine dephosphorylated, before the redistribution of FAK and spectrin. Moreover, phosphatase inhibition blocked cell retraction, suggesting that tyrosine dephosphorylation is an event that precedes FAK cleavage. Finally, we show that in vitro tyrosine-dephosphorylated FAK was susceptible to Pet cleavage. These data suggest that mechanisms other than spectrin redistribution occur during Pet intoxication.  相似文献   

17.
p116Rip is a ubiquitously expressed protein that was originally identified as a putative binding partner of RhoA in a yeast two-hybrid screen. Overexpression of p116Rip in neuroblastoma cells inhibits RhoA-mediated cell contraction induced by lysophosphatidic acid (LPA); so far, however, the function of p116Rip is unknown. Here we report that p116Rip localizes to filamentous actin (F-actin)-rich structures, including stress fibers and cortical microfilaments, in both serum-deprived and LPA-stimulated cells, with the N terminus (residues 1-382) dictating cytoskeletal localization. In addition, p116Rip is found in the nucleus. Direct interaction or colocalization with RhoA was not detected. We find that p116Rip binds tightly to F-actin (Kd approximately 0.5 microm) via its N-terminal region, while immunoprecipitation assays show that p116Rip is complexed to both F-actin and myosin-II. Purified p116Rip and the F-actin-binding region can bundle F-actin in vitro, as shown by electron microscopy. When overexpressed in NIH3T3 cells, p116Rip disrupts stress fibers and promotes formation of dendrite-like extensions through its N-terminal actin-binding domain; furthermore, overexpressed p116Rip inhibits growth factor-induced lamellipodia formation. Our results indicate that p116Rip is an F-actin-binding protein with in vitro bundling activity and in vivo capability of disassembling the actomyosin-based cytoskeleton.  相似文献   

18.
Modulation of Rac localization and function by dynamin   总被引:4,自引:0,他引:4       下载免费PDF全文
The GTPase dynamin controls a variety of endocytic pathways, participates in the formation of phagosomes, podosomal adhesions, and invadopodia, and in regulation of the cytoskeleton and apoptosis. Rac, a member of the Rho family of small GTPases, controls formation of lamellipodia and focal complexes, which are critical in cell migration and phagocytosis. We now show that disruption of dynamin(-2) function alters Rac localization and inhibits cell spreading and lamellipodia formation even though Rac is activated. Dominant-negative K44A dynamin(-2) inhibited cell spreading and lamellipodia formation on fibronectin without blocking cell adhesion; dynamin(-2) depletion by specific small interfering RNA inhibited lamellipodia in a similar manner. Dyn2(K44A) induced Rac mislocalization away from cell edges, into abnormal dorsal ruffles, and led to increased total Rac activity. Fluorescence resonance energy transfer imaging of Rac activity confirmed its predominant localization to aberrant dorsal ruffles in the presence of dominant-negative dyn2(K44A). Dyn2(K44A) induced the accumulation of tubulated structures bearing membrane-bound Rac-GFP. Constitutively active but not wild-type GFP-Rac was found on macropinosomes and Rac-dependent, platelet-derived growth factor-induced macropinocytosis was abolished by Dyn2(K44A) expression. These data suggest an indispensable role of dynamin in Rac trafficking to allow for lamellipodia formation and cell spreading.  相似文献   

19.
Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and dominant negative Rac1 reduced barrier function and lamellipodia activity. Combined, these data suggest that local lamellipodia, driven by myosin II and Rac1, are important for dynamic changes in endothelial barrier integrity.  相似文献   

20.
Cell adhesion to extracellular matrix is an important physiological stimulus for organization of the actin-based cytoskeleton. Adhesion to the matrix glycoprotein thrombospondin-1 (TSP-1) triggers the sustained formation of F-actin microspikes that contain the actin-bundling protein fascin. These structures are also implicated in cell migration, which may be an important function of TSP-1 in tissue remodelling and wound repair. To further understand the function of fascin microspikes, we examined whether their assembly is regulated by Rho family GTPases. We report that expression of constitutively active mutants of Rac or Cdc42 triggered localization of fascin to lamellipodia, filopodia, and cell edges in fibroblasts or myoblasts. Biochemical assays demonstrated prolonged activation of Rac and Cdc42 in C2C12 cells adherent to TSP-1 and activation of the downstream kinase p21-activated kinase (PAK). Expression of dominant-negative Rac or Cdc42 in C2C12 myoblasts blocked spreading and formation of fascin spikes on TSP-1. Spreading and spike assembly were also blocked by pharmacological inhibition of F-actin turnover. Shear-loading of monospecific anti-fascin immunoglobulins, which block the binding of fascin to actin into cytoplasm, strongly inhibited spreading, actin cytoskeletal organization and migration on TSP-1 and also affected the motility of cells on fibronectin. We conclude that fascin is a critical component downstream of Rac and Cdc42 that is needed for actin cytoskeletal organization and cell migration responses to thrombospondin-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号