首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Small molecule metabolites play important roles in regulating protein functions, which are acted through either covalent non-enzymatic post-translational modifications or non-covalent binding interactions. Chemical proteomic strategies can help delineate global landscapes of cellular protein–metabolite interactions and provide molecular insights about their mechanisms of action. In this review, we summarized the recent progress in developments and applications of chemoproteomic strategies to profile protein–metabolite interactions.  相似文献   

3.
4.
GABA in plants: just a metabolite?   总被引:14,自引:0,他引:14  
  相似文献   

5.
It is well established that β-adrenoceptors (β-ARs) in the hippocampal CA1 region are involved in regulating synaptic plasticity and are essential for acquisition and consolidation of spatial memory and contextual fear memory. Previous studies reported that β-ARs in the CA1 region are also involved in memory retrieval. The present study re-examined the role of hippocampal β-ARs in retrieval of conditioned contextual fear. We bilaterally infused a high dose of the β-AR antagonist propranolol (15 μg in 1 μl saline) into the CA1 region 30 min before retention test and found that propranolol produced no deficit in retrieval of either 1-day or 7-day contextual fear. We then examined if β-AR stimulation would produce a beneficial effect. The β-AR agonist isoproterenol (10 μg in 1 μl saline) was infused into the CA1 region 30 min before retention test. Surprisingly, isoproterenol did not enhance but severely disrupted retrieval of 7-day contextual fear memory, with no impact on retrieval of 1-day contextual fear memory. The present study argues against the previous conclusion that β-ARs in the CA1 region play a role in memory retrieval. β-ARs in the CA1 region may be dispensable for retrieval of conditioned contextual fear.  相似文献   

6.
7.
Venkitaraman AR 《Cell》2011,145(3):337-338
Genome instability occurs early in the development of most cancers. Bester et?al. now provide evidence that oncogenic signals trigger cell division without coordinate nucleotide synthesis, engendering aberrant DNA replication and damage that could promote carcinogenesis. A mismatch between proliferation and metabolite production may characterize oncogenic cell cycles.  相似文献   

8.
A convenient synthesis of ketamine metabolite dehydronorketamine-d(4), starting from commercially available deuterium labeled bromochlorobenzene, was achieved. Key steps include Grignard reaction, regioselective hydroxybromination, Staudinger reduction, and dehydrohalogenation.  相似文献   

9.
Understanding the molecular mechanisms of endogenous and environmental metabolites is crucial for basic biology and drug discovery. With the genome, proteome, and metabolome of many organisms being readily available, researchers now have the opportunity to dissect how key metabolites regulate complex cellular pathways in vivo. Nonetheless, characterizing the specific and functional protein targets of key metabolites associated with specific cellular phenotypes remains a major challenge. Innovations in chemical biology are now poised to address this fundamental limitation in physiology and disease. In this review, we highlight recent advances in chemoproteomics for targeted and proteome-wide analysis of metabolite–protein interactions that have enabled the discovery of unpredicted metabolite–protein interactions and facilitated the development of new small molecule therapeutics.  相似文献   

10.
The positive inotropic effect of isoproterenol was quantified in the presence of several beta-adrenergic blocking agents in ventricular strips of carp heart. Isoproterenol had a concentration-dependent positive inotropic effect. The effect was markedly inhibited by propranolol and carteolol, but was extremely insensitive to atenolol. Practolol totally failed to alter the effect. These results indicated that the positive inotropic effect of isoproterenol may be mediated by mostly beta-2 adrenergic receptors in ventricular strips of carp heart.  相似文献   

11.

Metabolite profiling is commonly performed by GC–MS of methoximated trimethylsilyl derivatives. The popularity of this technique owes much to the robust, library searchable spectra produced by electron ionization (EI). However, due to extensive fragmentation, EI spectra of trimethylsilyl derivatives are commonly dominated by trimethylsilyl fragments (e.g. m/z 73 and 147) and higher m/z fragment ions with structural information are at low abundance. Consequently different metabolites can have similar EI spectra, and this presents problems for identification of “unknowns” and the detection and deconvolution of overlapping peaks. The aim of this work is to explore use of positive chemical ionization (CI) as an adjunct to EI for GC–MS metabolite profiling. Two reagent gases differing in proton affinity (CH4 and NH3) were used to analyse 111 metabolite standards and extracts from plant samples. NH3-CI mass spectra were simple and generally dominated by [MH]+ and/or the adduct [M+NH4]+. For the 111 metabolite standards, m/z 73 and 147 were less than 3% of basepeak in NH3-CI and less than 30% of basepeak in CH4-CI. With CH4-CI, [MH]+ was generally present but at lower relative abundance than for NH3-CI. CH4-CI spectra were commonly dominated by losses of CH4 [M+1-16]+, 1–3 TMSOH [M+1-nx90]+, and combinations of CH4 and TMSOH losses [M+1-nx90-16]+. CH4-CI and NH3-CI mass spectra are presented for 111 common metabolites, and CI is used with real samples to help identify overlapping peaks and aid identification via determination of the pseudomolecular ion with NH3-CI and structural information with CH4-CI.

  相似文献   

12.
Metabolite profiling is commonly performed by GC–MS of methoximated trimethylsilyl derivatives. The popularity of this technique owes much to the robust, library searchable spectra produced by electron ionization (EI). However, due to extensive fragmentation, EI spectra of trimethylsilyl derivatives are commonly dominated by trimethylsilyl fragments (e.g. m/z 73 and 147) and higher m/z fragment ions with structural information are at low abundance. Consequently different metabolites can have similar EI spectra, and this presents problems for identification of “unknowns” and the detection and deconvolution of overlapping peaks. The aim of this work is to explore use of positive chemical ionization (CI) as an adjunct to EI for GC–MS metabolite profiling. Two reagent gases differing in proton affinity (CH4 and NH3) were used to analyse 111 metabolite standards and extracts from plant samples. NH3-CI mass spectra were simple and generally dominated by [MH]+ and/or the adduct [M+NH4]+. For the 111 metabolite standards, m/z 73 and 147 were less than 3% of basepeak in NH3-CI and less than 30% of basepeak in CH4-CI. With CH4-CI, [MH]+ was generally present but at lower relative abundance than for NH3-CI. CH4-CI spectra were commonly dominated by losses of CH4 [M+1-16]+, 1–3 TMSOH [M+1-nx90]+, and combinations of CH4 and TMSOH losses [M+1-nx90-16]+. CH4-CI and NH3-CI mass spectra are presented for 111 common metabolites, and CI is used with real samples to help identify overlapping peaks and aid identification via determination of the pseudomolecular ion with NH3-CI and structural information with CH4-CI.  相似文献   

13.
Deciphering of the plant metabolome is one of the most difficult analytical tasks in functional genomic research. Studies directed at the gene or protein expression are well established, sequencing analyses of these kinds of biopolymers on genome or proteome level are possible. This is not the case for metabolites, where identification in single sample of many chemical entities of different elemental composition and structures and various physicochemical properties is necessary. Different instrumental methods are applied for identification of metabolites but none of them allows obtaining unambiguous structural information about more than 500 compounds in single mixture (metabolite profiling). This is a much smaller number of metabolites than is predicted for single plant metabolome. However, instrumental approaches were proposed (metabolite fingerprinting) in which biochemical phenotype of an organism may be estimated, but identification of individual compounds is not possible.  相似文献   

14.
15.
16.
β-Glucosidases (EC 3.2.1.21), abundant enzymes distributed in animals, plants and microorganism, has been generating lots of attentions for bioethanol production from cellulosic biomass. In this study, using three different origins of β-glucosidases, glucose productivity of β-glucosidase-catalyzed hydrolysis reactions in the presence of synthetic betaine-type metabolite analog (2-N,N,N-tri-n-butylammonium) acetate, was investigated. By the addition of the analog, the hydrolysis yields for all β-glucosidases was highly improved from 4–13 to 64–100 %. To understand the factors affecting on the yield enhancements, the kinetic parameters, inhibition constants of end-product and temporal stability of β-glucosidases were compared. As a result, enhancement of the yields is mainly related to the increase in the temporal stability of β-glucosidases in the presence of the analog. The present findings lead to not only improve the glucose productivity of β-glucosidase-catalyzed hydrolysis reaction toward bioethanol production but also apply to a new stabilization method for various unstable enzymes.  相似文献   

17.

Background

The aim of the present work was to examine the role of UV-C irradiation on the production of secondary metabolites (total phenolic, total flavanols, total flavonols, catechin, ferulic acid and trans-resveratrol in phenolic compounds and α-, β-, γ- δ-tocopherols) in callus cultures. Studies on the effects of UV-C treatment on callus culture are seldom and generally focused on UV-B. However UV-C radiation play an important role in accumule secondary metabolites.

Results

In this study, callus cultures from Öküzgözü grape cultivar were initiated from leaf petiole explants. Calli formed after 6 weeks on the medium supplemented with 0.5 mg L-1 benzylaminopurine (BA), 0.5 mg L-1 indole acetic acid (IAA) on B5 media. Callus tissues were exposed to UV-C irradiation at 10, 20 and 30 cm distances from the UV source for 5 and 10 minutes and samples were collected at hours 0, 24 and 48.

Conclusions

The greatest total phenolic content (155.14 mg 100 g-1) was detected in calli exposed to UV-C for 5 min from 30 cm distance and sampled after 24 h. 24 h and 48 h incubation times, 30 cm and 5 min were the most appropriate combination of UV-C application in total flavanol content. Maximum total flavonol content (7.12 mg 100 g-1) was obtained on 0 h, 5 min and 20 cm combination. The highest (+)- catechin accumulation (8.89 mg g-1) was found in calli with 10 min UV-C application from 30 cm distance and sampled after 48 h. Ferulic acid content increased 6 fold in Öküzgözü callus cultures (31.37 μg g-1) compared to the control group. The greatest trans-resveratrol content (8.43 μg g-1) was detected in calli exposed to UV-C for 5 min from 30 cm distance and sampled after 24 h. The highest α-tocopherol concentration was found in calli exposed to UV-C for 10 min from 30 cm distance and sampled after 24 h. As a conclusion, it was showed that UV-C radiation had remarkable promoting effects on the accumulation of secondary metabolites in the calli of Öküzgözü grape cultivar.  相似文献   

18.
《Life sciences》1994,54(6):PL69-PL74
The in vivo metabolism of 9-cis-retinoic acid (9-c-RA), an endogenous ligand of retinoid X receptors (RXRs), which can also bind to retinoic acid receptors (RARs), was examined in pregnant mice and rats following a single oral dose of 100 mg 9-cis- retinaldehyde (9-c-RAL) / kg body weight. 9-Cis-retinoyl-β-glucuronide (9-c-RAG), a metabolite not found in vivo before, was a major metabolite of 9-c-RA in mouse plasma and was also present in all mouse tissues examined as well as in rat plasma. In both species putative oxidation products of retinoic acids and high levels of retinyl esters were found. Concentrations of retinoic acid isomers and retinoyl-β-D-glucuronides in the mouse plasma greatly exceeded those of the rat plasma. The finding of high levels of 9-c-RAG underlines the importance of glucuronidation in the metabolism of retinoids.  相似文献   

19.
A study was conducted to assess Typha spp.'s ability to withstand and remove, from water, a metabolite of blood lipid regulator drugs, clofibric acid (CA). At a concentration of 20 microg L(-1), Typha had removed >50% of CA within the first 48h, reaching a maximum of 80% by the end of the assay. Experimental conditions assured that photodegradation, adsorption to vessel walls and microbial degradation did not contribute to the removal. Exposure to higher CA concentrations did not affect Typha's photosynthetic pigments but the overall increase in enzyme activity (ascorbate and guaiacol peroxidases, catalase, superoxide dismutase) indicates that both roots and leaves were affected by the xenobiotic. Eventually, Typha seemed able to cope with the CA's induced oxidative damage suggesting its ability for phytoremediation of CA contaminated waters.  相似文献   

20.
Jethva PN  Kardani JR  Roy I 《The FEBS journal》2011,278(10):1688-1698
The neurotransmitter dopamine has been shown to inhibit fibrillation of α-synuclein by promoting the formation of nonamyloidogenic oligomers. Fibrillation of α-synuclein is accelerated in the presence of pesticides and the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The aim of this study was to determine whether dopamine continues to have an adverse effect on the fibrillation of α-synuclein in the presence of MPTP and its metabolite 1-methyl-4-phenylpyridinum ion (MPP(+) ). We also attempted to answer the ambiguous question of whether conversion of MPTP to MPP(+) is required for the fibrillation of α-synuclein. For this, α-synuclein was incubated in the presence of MPTP and MPP(+) along with dopamine. The fibrillation of α-synuclein was monitored by Thioflavin T fluorescence and immunoblotting. The morphology of the aggregates formed was observed using scanning electron microscopy. The concentrations of the neurotoxin and its metabolite were estimated by reverse phase HPLC. We found definitive evidence that the conversion of MPTP to MPP(+) is not required for aggregation of α-synuclein. MPP(+) was found to accelerate the rate of α-synuclein aggregation even in the absence of components of mitochondrial complex I. In contrast to the effect of dopamine on the aggregation of α-synuclein alone, in the presence of MPTP or MPP(+) , the aggregates formed are Thioflavin T-positive and amyloidogenic. Thus, the effect of dopamine on the nature of aggregates formed in case of α-synuclein alone and in the presence of MPTP/MPP(+) is different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号