首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate if either wild-type or aggregated Cx43 is abnormally targeted to lysosomes in human breast tumor cells, we examined the fate of DsRed-tagged Cx43 and over-expressed Cx43 in communication-deficient HBL-100 and MDA-MB-231 cells. DsRed-tagged Cx43 was assembled into gap junctions in control normal rat kidney cells that express endogenous Cx43 but not in Cx43-negative HBL-100 cells. However, when HBL-100 cells were engineered to coexpress wild-type Cx43 a population of DsRed-tagged Cx43 was rescued and assembled into gap junctions. Co-expression of wild-type Cx26 failed to rescue the assembly of DsRed-tagged Cx43 into gap junctions. Immunolocalization studies revealed that DsRed-tagged Cx43 was aggregated and partially localized to lysosomes. Interestingly, when human MDA-MB-231 breast tumor cells over-expressed wild-type Cx43, Cx43 protein primarily localized to lysosomes. Together, these studies provide evidence for Cx43 being targeted to lysosomes as a result of misfolding and aggregation, while in other cases, the delivery of wild-type Cx43 to lysosomes appears to be due to defects innate to the breast tumor cell type.  相似文献   

2.
The present study was designed to determine the specific roles played by lysosomes and proteasomes in the degradation of Cx43 in both gap junctional intercellular communication-deficient MDA-MB-231 and -competent BICR-M1Rk cells. In MDA-MB-231 cells, immunolocalization and brefeldin A protein transport blocking studies revealed that there was a propensity for newly synthesized Cx43 to be transported to lysosomes. On the other hand, light and electron microscopic analysis of BICR-M1Rk cells showed that Cx43 gap junctions were prevalent with a subpopulation of intracellular Cx43 localized to lysosomes. In both cell types, Western blots revealed a notable increase in total cellular Cx43 in response to lysosome inhibitors. Interestingly, lactacystin inhibition of proteosomal degradation in MDA-MB-231 cells resulted in a marked increase in phosphorylated Cx43 at the expense of non-phosphorylated Cx43, and this change corresponded with an increase in "oversized" gap junction plaques. In BICR-M1Rk cells, lactacystin treatment partially prevented the BFA-induced loss of gap junctions. Together, our data suggests that lysosomes play a key role in not only degrading internalized gap junction in BICR-M1Rk cells but also in degrading Cx43 delivered from early secretory compartments to lysosomes in MDA-MB-231 cells. Overall proteasomal degradation regulates the stability of phosphorylated Cx43 and appears to promote the internalization of Cx43 from the cell surface.  相似文献   

3.
The mechanism by which gap junction proteins, connexins, act as potent tumor suppressors remains poorly understood. In this study human breast tumor cells were found to exhibit diverse gap junction phenotypes including (a) undetectable Cx43 and no intercellular communication (HBL100); (b) low levels of Cx43 and sparse intercellular communication (MDA-MB-231); and (c) significant levels of Cx43 and moderate intercellular communication (Hs578T). Although retroviral delivery of Cx43 and Cx26 cDNAs to MDA-MB-231 cells did not achieve an expected substantial rescue of intercellular communication, overexpression of connexin genes did result in a dramatic suppression of tumor growth when connexin-expressing MDA-MB-231 cells were implanted into the mammary fat pad of nude mice. Subsequent immunolocalization studies on xenograph sections revealed only cytoplasmic stores of Cx43 and no detectable gap junctions. Moreover, DNA array and Western blot analysis demonstrated that overexpression of Cx43 or Cx26 in MDA-MB-231 cells down-regulated fibroblast growth factor receptor-3. Surprisingly, these results suggest that Cx43 and Cx26 induce their tumor-suppressing properties by a mechanism that is independent of significant gap junctional intercellular communication and possibly through the down-regulation of key genes involved in tumor growth. Moreover, our studies show that retroviruses are effective vehicles for delivering connexins to human breast tumor cells, facilitating potential gene therapy applications.  相似文献   

4.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gap junctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

5.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with "permissive" connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

6.
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell–cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif–deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43’s endocytosis and assembly into gap junctions.  相似文献   

7.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with “permissive” connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

8.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

9.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

10.
Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus.  相似文献   

11.
Gap junctions mediate direct cell-to-cell communication by forming channels that physically couple cells, thereby linking their cytoplasm, permitting the exchange of molecules, ions, and electrical impulses. Gap junctions are assembled from connexin (Cx) proteins, with connexin 43 (Cx43) being the most ubiquitously expressed and best studied. While the molecular events that dictate the Cx43 life cycle have largely been characterized, the unusually short half-life of Cxs of only 1–5 h, resulting in constant endocytosis and biosynthetic replacement of gap junction channels, has remained puzzling. The Cx43 C-terminal (CT) domain serves as the regulatory hub of the protein affecting all aspects of gap junction function. Here, deletion within the Cx43 CT (amino acids 256–289), a region known to encode key residues regulating gap junction turnover, is employed to examine the effects of dysregulated Cx43 gap junction endocytosis using cultured cells (Cx43∆256-289) and a zebrafish model (cx43lh10). We report that this CT deletion causes defective gap junction endocytosis as well as increased gap junction intercellular communication. Increased Cx43 protein content in cx43lh10 zebrafish, specifically in the cardiac tissue, larger gap junction plaques, and longer Cx43 protein half-lives coincide with severely impaired development. Our findings demonstrate for the first time that continuous Cx43 gap junction endocytosis is an essential aspect of gap junction function and, when impaired, gives rise to significant physiological problems as revealed here for cardiovascular development and function.  相似文献   

12.
13.
The development and function of the mammary gland require precise control of gap junctional intercellular communication (GJIC). Here, we review the expression and function of gap junction proteins, connexins, in the normal mouse and human mammary gland. We then discuss the possible tumor-suppressive role of Cx26 and Cx43 in primary breast tumors and through the various stages of breast cancer metastasis and consider whether connexins or GJIC may actually promote tumorigenesis at some stages. Finally, we present in vitro data on the impact of connexin expression on breast cancer cell metastasis to the bone. We observed that Cx43 expression inhibited the invasive and migratory potentials of MDA-MB-231 breast cancer cells in a bone microenvironment, provided by the MC3T3-E1 mouse osteoblastic cell line. Expression of either Cx26 or Cx43 had no effect on MDA-MB-231 growth and adhesion under the influence of osteoblasts and did not result in regulation of osteogenic gene expression in these breast cancer cells. Furthermore, connexin-expressing MDA-MB-231 cells did not have an effect on the growth or differentiation of MC3T3-E1 cells. In summary, we conclude that connexin expression and GJIC are integral to the development and differentiation of the mammary gland. In breast cancer, connexins generally act as tumor suppressors in the primary tumor; however, in advanced breast tumors, connexins appear to act as both context-dependent tumor suppressors and facilitators of disease progression.  相似文献   

14.
Direct cell-to-cell transfer of ions and small signaling molecules via gap junctions plays a key role in vessel wall homeostasis. Vascular endothelial gap junctional channels are formed by the connexin (Cx) proteins Cx37, Cx40, and Cx43. The mechanisms regulating connexin expression and assembly into functional channels have not been fully identified. We investigated the dynamic regulation of endothelial gap junctional intercellular communication (GJIC) by fluid flow and the participation of each vascular connexin in functional human endothelial gap junctions in vitro. Human aortic endothelial cells (HAEC) were exposed for 5, 16, and 24 h to physiological flows in a parallel-plate flow chamber. Connexin protein expression and localization were evaluated by immunocytochemistry, and functional GJIC was evaluated by dye injection. Connexin-mimetic peptide inhibitors were used to assess the specific connexin composition of functional channels. HAEC monolayers in culture exhibited baseline functional communication at a striking low level despite abundant expression of Cx43 and Cx40 localized at cell-to-cell appositions. Upon exposure to flow, GJIC by dye spread demonstrated a significant time-dependent increase from baseline levels, reaching 7.5-fold in 24 h. Inhibition studies revealed that this response was mediated primarily by Cx40, with lesser contributions of the other two vascular connexins assembled into functional homotypic and/or heterotypic channels. This is the first study to demonstrate that flow simultaneously and differentially regulates expression of the Cx37, Cx40, and Cx43 proteins and their involvement in the augmentation of intercellular communication by dye transfer in human endothelial cells in vitro.  相似文献   

15.
In the ovarian follicle, granulosa cells adjacent to the oocyte extend processes through the zona pellucida matrix, and these projections establish gap junctions both with the oocyte and with neighboring transzonal projections. The identity of connexins contributing to gap junctions between transzonal projections has not been extensively studied. Here, we examined the expression pattern of Cx37 and Cx43 in mouse zona pellucida using multiple connexin-specific antibodies. Immunofluorescence staining revealed abundant Cx37 and Cx43 puncta within the zona pellucida of both preantral and antral follicles. Cx37 persisted in the zona pellucida of mature follicles up to 5 h after an ovulatory stimulus whereas Cx43 was reduced in the zona pellucida by 3 h after an ovulatory stimulus. We suggest that in addition to its role in oocyte-granulosa cell communication, Cx37 could enable a distinct communication pathway between those granulosa cells that are in direct contact with the oocyte.  相似文献   

16.
In the ovarian follicle, granulosa cells adjacent to the oocyte extend processes through the zona pellucida matrix, and these projections establish gap junctions both with the oocyte and with neighboring transzonal projections. The identity of connexins contributing to gap junctions between transzonal projections has not been extensively studied. Here, we examined the expression pattern of Cx37 and Cx43 in mouse zona pellucida using multiple connexin-specific antibodies. Immunofluorescence staining revealed abundant Cx37 and Cx43 puncta within the zona pellucida of both preantral and antral follicles. Cx37 persisted in the zona pellucida of mature follicles up to 5 h after an ovulatory stimulus whereas Cx43 was reduced in the zona pellucida by 3 h after an ovulatory stimulus. We suggest that in addition to its role in oocyte-granulosa cell communication, Cx37 could enable a distinct communication pathway between those granulosa cells that are in direct contact with the oocyte.  相似文献   

17.
Mutations in the gene encoding connexin-43 (Cx43) cause the human development disorder known as oculodentodigital dysplasia (ODDD). In this study, ODDD-linked Cx43 N-terminal mutants formed nonfunctional gap junction-like plaques and exhibited dominant-negative effects on the coupling conductance of coexpressed endogenous Cx43 in reference cell models. Nuclear magnetic resonance (NMR) protein structure determination of an N-terminal 23-amino acid polypeptide of wild-type Cx43 revealed that it folded in to a kinked α-helical structure. This finding predicted that W4 might be critically important in intramolecular and intermolecular interactions. Thus we engineered and characterized a W4A mutant and found that this mutant formed a regular, nonkinked α-helix but did not form functional gap junctions. Furthermore, a G2V variant peptide of Cx43 showed a kinked helix that now included V2 interactions with W4, resulting in the G2V mutant forming nonfunctional gap junctions. Also predicted from the NMR structures, a G2S mutant was found to relieve these interactions and allowed the protein to form functional gap junctions. Collectively, these studies suggest that the nature of the mutation conveys loss of Cx43 function by distinctly different mechanisms that are rooted in the structure of the N-terminal region.  相似文献   

18.
《FEBS letters》2014,588(8):1423-1429
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially “unzip” and be internalized/endocytosed into the cell that produced each connexin.  相似文献   

19.
Lycopene, the major carotenoid found in tomatoes, is a potent antioxidant associated with the prevention of degenerative diseases such as breast cancer. This effect could be due to the interaction between lycopene and retinoic acid receptors as well as the stimulation of gap junction communication and synthesis of connexin 43. The expression of the RARalpha, RARbeta, and Cx43 proteins was analyzed using immunohistochemistry in two breast cancer cell lines, MCF-7 and MDA-MB-231, and in a fibrocystic dystrophy cell line, MCF-10a, after a 48-hr exposure to 10 microM lycopene. A real-time quantitative PCR analysis was then performed to measure mRNA expression. RARalpha and Cx43 expression were increased at both mRNA and protein levels in two breast cell lines.  相似文献   

20.
A connexin construct consisting of bacterial beta-galactosidase fused to the C-terminus of connexin43 (Cx43/beta-gal) was used to examine Cx43 assembly in NIH 3T3 cells. Cx43/beta-gal is retained in a perinuclear compartment and inhibits Cx43 transport to the cell surface. The intracellular connexin pool trapped by Cx43/beta-gal was retained in a compartment that co-localized with a medial Golgi apparatus marker by immunofluorescence microscopy and that was readily disassembled by treatment with brefeldin A. Further analysis by sucrose gradient fractionation showed that Cx43 and Cx43/beta-gal were assembled into a sub-hexameric complex, and that Cx43/beta-gal expression also inhibited Cx43 assembly into hemichannels. While this is consistent with Cx43 hemichannel assembly in the trans Golgi network (TGN), these data also suggest that the dominant negative effect of Cx43/beta-gal on Cx43 trafficking may reflect a putative sub-hexameric assembly intermediate formed in the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号