首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transformation-defective Vero cell host range mutant CS-1 of the highly oncogenic adenovirus type 12 (Ad12) (Ad12-CS-1) has a 69-bp deletion in the early region 1A (E1A) gene that removes the carboxy-terminal half of conserved region 2 and the amino-terminal half of the Ad12-specific so-called spacer that seems to play a pivotal role in the oncogenicity of the virus. Despite its deficiency in immortalizing and transforming primary rodent cells, we found that the E1A 13S protein of Ad12-CS-1 retains the ability to bind p105-RB, p107, and p130 in nuclear extract binding assays with glutathione S-transferase-E1A fusion proteins and Western blot analysis. Like wild-type E1A, the mutant protein was able to dissociate E2F from retinoblastoma-related protein-containing complexes, as judged from gel shift experiments with purified 12S and 13S proteins from transfection experiments with an E1A expression vector or from infection with the respective virus. Moreover, in transient expression assays, the 12S and 13S products of wild-type Ad12 and Ad12-CS-1 were shown to transactivate the Ad12 E1A promoter containing E2F-1 and E2F-5-motifs, respectively, in a comparable manner. The same results were obtained from transfection assays with the E2F motif-dependent E2 promoter of adenovirus type 5 or the human dihydrofolate reductase promoter. These data suggest that efficient infection by Ad12 and the correlated virus-induced reprogramming of the infected cells, including the induction of cell cycle-relevant mechanisms (e.g. E2F activation), can be uncoupled from the transformation properties of the virus.  相似文献   

2.
3.
The tumor (T) antigens encoded by the human adenovirus early transforming region 1A (E1A) are gene regulatory proteins whose functions can immortalize cells. We have recently described the synthesis in Escherichia coli and the purification of the complete T antigens encoded by the adenovirus type 12 (Ad12) E1A 12S mRNA (235-residue [235R] T antigen) and 13S mRNA (266R T antigen). In this study, we show that the Ad12 E1A T antigens are extensively phosphorylated in Ad12-infected mammalian cells but are not phosphorylated in E. coli. Inasmuch as posttranslational phosphorylation at specific amino acid sites may be important for biological activity, we have studied the phosphorylation of the E. coli-produced T antigens in vitro by using a kinase activity isolated from cultured human KB cells. The kinase was purified about 300-fold and appears to be a cyclic AMP-independent, Ca2+-independent protein kinase requiring only ATP and Mg2+ for activity. To determine which amino acids are phosphorylated and whether phosphorylation in vitro occurs at the same amino acid sites that are phosphorylated in vivo, the Ad12 E1A T-antigen species synthesized by infected cells were metabolically labeled with 32Pi and compared with the E. coli-produced E1A T antigens labeled in vitro with [gamma-32P]ATP by using the partially purified kinase. Partial V8 proteolysis analysis gave similar patterns for in vivo- and in vitro-phosphorylated T antigen. Two-dimensional maps of tryptic phosphopeptides and of chymotryptic phosphopeptides suggested that mainly the same amino acid sites are phosphorylated in vitro and in vivo and that phosphorylation occurred at multiple sites distributed throughout the T-antigen molecule. Serine was the only amino acid that was phosphorylated both in vivo and in vitro, and, surprisingly, most serines appeared to be phosphorylated. The feasibility of faithfully phosphorylating T antigens in vitro suggests that the E. coli-produced Ad12 E1A 235R and 266R T antigens may prove useful for molecular studies on T-antigen function.  相似文献   

4.
The formation of complexes between oncoproteins of DNA tumor viruses and the cellular protein p53 is thought to result in inactivation of the growth suppressor function of p53. In cells transformed by nononcogenic human adenovirus type 5 (Ad5), the 55-kDa protein encoded by E1B forms a stable complex with p53 and sequesters it in the cytoplasm. However, the homologous 54-kDa protein of highly oncogenic Ad12 does not detectably associate with p53. Yet in Ad12-transformed cells, p53 is metabolically stable, is present at high levels in the nucleus, and contributes to the oncogenicity of the cells. Such properties have previously been described for mutant forms of p53. Here, we show that stable p53 in Ad12-transformed cells is wild type rather than mutant and that stabilization of p53 is a direct consequence of the expression of the Ad12 E1B protein. We also compared the effects of the E1B proteins on transformation of rodent cells by different combinations of oncogenes. A synergistic interaction was observed for the gene encoding the 54-kDa E1B protein of Ad12 with myc plus ras oncogenes, resembling the effect of mutant p53 on myc plus ras. In contrast, the Ad5 55-kDa E1B protein strongly inhibited transformation by myc plus ras but stimulated transformation by E1A plus ras. The data are explained in terms of different interactions of the two E1B proteins with endogenous p53. The results suggest that in cultured rat cells, endogenous wild-type p53 plays an essential role in cell proliferation, even in the presence of myc plus ras. The dependence on p53 is lost, however, when the adenovirus E1A oncogene is present.  相似文献   

5.
6.
7.
The human adenovirus type 2 (Ad2) mutant Ad2ts111 has previously been shown to contain two mutations which result in a complex phenotype. Ad2ts111 contains a single base change in the early region 1B (E1B) 19,000-molecular-weight (19K) coding region which yields a cyt deg phenotype and another defect which maps to the E2A 72K DNA-binding protein (DBP) coding region that causes a temperature-sensitive DNA replication phenotype. Here we report that the defect in the Ad2ts111 DBP is due to a single G----T transversion that results in a substitution of valine for glycine at amino acid 280. A temperature-independent revertant, Ad2ts111R10, was isolated, which reverts back to glycine at amino acid 280 yet retains the cyt and deg phenotypes caused by the 19K mutation. We physically separated the two mutations of Ad2ts111 by constructing a recombinant virus, Ad2ts111A, which contained a wild-type Ad2 E1B 19K gene and the gly----val mutation in the 72K gene. Ad2ts111A was cyt+ deg+, yet it was still defective for DNA replication at the nonpermissive temperature. The Ad2ts111 DBP mutation is located only two amino acids away from the site of the mutation in Ad2+ND1ts23, a previously sequenced DBP mutant. Biochemical studies of purified Ad2+ND1ts23 DBP showed that this protein was defective for elongation but not initiation of replication in a cell-free replication system consisting of purified Ad polymerase, terminal protein precursor, and nuclear factor I. Ad2+ND1ts23 DBP bound less tightly to single-strand DNA than did Ad2 DBP, as shown by salt gradient elution of purified DBPs from denatured DNA cellulose columns. This decreased binding to DNA was probably due to local conformational changes in the protein at a site that is critical for DNA binding rather than to global changes in protein structure, since both the Ad2+ND1ts23 and Ad2 DBPs showed identical cleavage patterns by the protease thermolysin at various temperatures.  相似文献   

8.
tsAF8 cells are temperature-sensitive (ts) mutants of BHK-21 cells that arrest at the nonpermissive temperature in the G1 phase of the cell cycle. When made quiescent by serum restriction, they can be stimulated to enter the S phase by 10% serum at 34 degrees C, but not at 40.6 degrees C. Infection by adenovirus type 2 or type 5 stimulates cellular DNA synthesis in tsAF8 cells at both 34 and 40.6 degrees C. Infection of these cells with deletion Ad5dl312, Ad5dl313, Ad2 delta p305, and Ad2+D1) and temperature-sensitive (H5ts125, H5ts36) mutants of adenovirus indicates that the expression of both early regions 1A and 2 is needed to induce quiescent tsAF8 cells to enter the S phase at the permissive temperature. This finding has been confirmed by microinjection of selected adenovirus DNA fragments into the nucleus of tsAF8 cells. In addition, we have shown that additional viral functions encoded by early regions 1B and 5 are required for the induction of cellular DNA synthesis at the nonpermissive temperature.  相似文献   

9.
The nucleotide sequence of the region between map positions 8.0 (HindIII site) and 11.8 (SmaI site) of adenovirus type 5 (Ad5) has been determined. Together with the sequences reported earlier (Van Ormondt et al., 1978; Maat and Van Ormondt, 1979) it encompasses the entire leftmost early region E1 of Ad5 DNA (4126 base pairs). The total sequence revealed a number of potential regulatory signals (promoter sites, ribosome binding sites, 3'-poly(A)-associated sequences), which confirm that region E1 is divided into subregions, E1a and E1b, and a region coding for semi-late viral protein IX. By taking into account the adenovirus 2 (Ad2) RNA-splicing data of Perricaudet et al. (1979; 1980) and the Ad2 RNA mapping data of Chow et al. (1979) we predict that E1a codes for polypeptides of 32, 26 and ca. 13 kd, and subregion E1b for polypeptides of 67 kd and 20 kd; the expected molecular weight of protein IX is 14.4 kd.  相似文献   

10.
Human adenovirus early region 1A (E1A) gene products differentially regulate the expression of early region 2A (E2A) encoding the DNA-binding protein (DBP). In a microinjection system, plasmids containing the DBP gene associated with both its early (map coordinate 75) and late (coordinate 72) promoters, or only with the early promoter, are inefficiently expressed, and the presence of E1A DNA is required for full expression. In contrast, the E2A plasmid in which the DBP gene is associated solely with its late promoter, efficiently produces DBP, the synthesis of which is significantly inhibited by an E1A gene product. To identify which of the E1A products is responsible for either activation or repression of DBP gene expression, two E1A mutants (Ad5hr1 and Ad2/5pm975) have been tested in the microinjection system in the presence of different DBP plasmids containing either one or both promoters. The results obtained indicate that the product encoded by the E1A 13S mRNA is responsible for the stimulation of DBP produced from the early promoter and that the 12S mRNA codes for the product which represses the synthesis of DBP from the late promoter. These results were confirmed using clones in which the E2A early or late promoter was associated to the chloramphenicol acetyltransferase (CAT) gene and assayed for CAT activity after cell transfection in the absence or in the presence of wild-type or mutant E1A plasmids, and we have also shown that this promoter-dependent regulation is reflected in the relative amount of specific DBP mRNA.  相似文献   

11.
12.
13.
Adenovirus E1A-mediated regulation of class I MHC expression.   总被引:2,自引:0,他引:2       下载免费PDF全文
Expression of class I MHC transplantation antigens has been shown to be reduced in baby rat kidney (BRK) cells transformed by highly oncogenic adenovirus type 12 (Ad12), as compared with untransformed cells and cells transformed by non-oncogenic Ad5. Here we show that this reduction of class I expression also occurs in a variety of other primary cell cultures transformed by Ad12, and that reduction of class I gene expression occurs for all class I loci. Transfection of Ad5E1 into class I-negative Ad12-transformed BRK cells leads to complete restoration of class I expression. Introduction of Ad12E1 into most class I-positive established cell lines does not result in suppression of class I expression. However, transfection of the Ad12E1A region into a class I-positive cell line which was immortalized by a mutant Ad12E1A region resulted in suppression of class I gene expression, implying that the suppression of class I activity in Ad12-transformed cells is due to an active switching-off process.  相似文献   

14.
《Gene》1997,185(2):181-186
Bovine adenovirus type 2 (BAV2) is a medium size double-stranded DNA virus which infects both bovine and ovine species, resulting in mild respiratory and gastrointestinal disorders. To better understand the virus and its growth characterisitics in Madin-Darby bovine kidney (MDBK) cells, we have cloned and sequenced the extreme right-end segment of the BAV2 genome (90.5–100 map units). Analysis of the nucleotide sequence revealed 40 potential open reading frames (ORFs) with coding capacity for polypeptides that are 25 or more amino acid (aa) residues long. Six of these ORFs encode polypeptides that show homology to well-characterized early region 4 (E4) proteins of human adenovirus type 2 (Ad2) and Ad12. ORF1 has the potential to encode a 114 aa long polypeptide that is 54% homologous to the E4 14 kDa protein of Ad2. ORF2 encodes a 78 aa long polypeptide that exhibits 40% homology to the E4 13 kDa protein of Ad2. ORFs 3–6 encode polypeptides that have homology to the E4 34 kDa protein encoded by ORF6 of Ad2 and Ad12. ORFs 3, 4 and 5 encode 128, 96 and 31 aa long polypeptides, respectively. The 128-aa polypeptide exhibits 59% homology, while the 96 and 31 aa long polypeptides exhibit 61% and 70% homology to the E4 34 kDa protein, respectively. ORF6 has the potential to encode a 57 aa long polypeptide that has 67% homology to the E4 34 kDa protein of Ad2 and 50% homology to the E4 34 kDa protein of Ad12.  相似文献   

15.
Baby rat kidney (BRK) cells were transfected either with intact region E1 DNA of adenovirus type 5 (Ad5) or with mixtures of DNA fragments containing the separated E1a and E1b regions. The results showed that mixtures of regions E1a and E1b transform with a similar efficiency as intact region E1. DNA fragments containing region E1b alone have no detectable transforming activity in primary BRK cells nor in established rat cell lines. When region E1a and Ad5 was combined with region E1b and Ad12 complete transformation was also obtained. Characterization of the cell lines transformed by separated E1a and E1b regions have led to the following conclusions: (1) Expression of region E1b is not dependent on specific linkage to region E1a as it occurs in the intact E1 region. (2) Region E1b is normally expressed into the corresponding major adenovirus T antigens (65,000 and 19,000 Mr with region E1b of Ad5; 60,000 and 19,000 Mr with E1b or AD12). (3) Region E1b of Ad12 can be activated by region E1a of Ad5 indicating that the Ela regions of both serotypes are functionally similar in transformation. (4) Cell lines containing region E1b of Ad5 are weakly oncogenic in nude mice whereas cells containing E1b of Ad12 are highly oncogenic in nude mice, indicating that the degree of oncogenicity is determined by region E1b.  相似文献   

16.
Adenovirus type 5 (Ad5) inactivates the host cell DNA damage response by facilitating the degradation of Mre11, DNA ligase IV, and p53. In the case of p53, this is achieved through polyubiquitylation by Ad5E1B55K and Ad5E4orf6, which recruit a Cul5-based E3 ubiquitin ligase. Recent evidence indicates that this paradigm does not apply to other adenovirus serotypes, since Ad12, but not Ad5, causes the degradation of TOPBP1 through the action of E4orf6 alone and a Cul2-based E3 ubiquitin ligase. We now have extended these studies to adenovirus groups A to E. While infection by Ad4, Ad5, and Ad12 (groups E, C, and A, respectively) cause the degradation of Mre11, DNA ligase IV, and p53, infection with Ad3, Ad7, Ad9, and Ad11 (groups B1, B1, D, and B2, respectively) only affects DNA ligase IV levels. Indeed, Ad3, Ad7, and Ad11 cause the marked accumulation of p53. Despite this, MDM2 levels were very low following infection with all of the viruses examined here, regardless of whether they increase p53 expression. In addition, we found that only Ad12 causes the degradation of TOPBP1, and, like Ad5, Ad4 recruits a Cul5-based E3 ubiquitin ligase to degrade p53. Surprisingly, Mre11 and DNA ligase IV degradation do not appear to be significantly affected in Ad4-, Ad5-, or Ad12-infected cells depleted of Cul2 or Cul5, indicating that E1B55K and E4orf6 recruit multiple ubiquitin ligases to target cellular proteins. Finally, although Mre11 is not degraded by Ad3, Ad7, Ad9, and Ad11, no viral DNA concatemers could be detected. We suggest that group B and D adenoviruses have evolved mechanisms based on the loss of DNA ligase IV and perhaps other unknown molecules to disable the host cell DNA damage response to promote viral replication.  相似文献   

17.
The cell growth-regulating properties of the adenovirus type 5 (Ad5) E1A oncogene correlate closely with the binding of the E1A products to specific cellular proteins. These proteins include the products of the retinoblastoma tumor susceptibility gene and a 300-kDa product, p300. pRB binds to E1A sequences that are highly conserved among the E1A products of various serotypes, while p300 binding requires sequences in the E1A amino terminus, a region that is not highly conserved. To help evaluate the roles of the E1A-associated proteins in cell growth control, we have compared the p300-binding abilities of the E1A products of Ad5 and of the more oncogenic Ad12 serotype. We show here that despite encoding a sequence that varies somewhat from the p300-binding sequences of Ad5 E1A, the Ad12 E1A products associate with p300 with an affinity similar to that of the Ad5 E1A products. Both the 12S and 13S splice products of Ad12 E1A, like those of Ad5 E1A, encode proteins able to associate with p300. Interestingly, though, both also give rise to prominent forms that are amino terminally modified and unable to associate with p300. This modification, at least in the 13S product, does not appear to diminish the affinity of this product for the retinoblastoma protein.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号