首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The class B M1-V577 penicillin-binding protein (PBP) 3 of Escherichia coli consists of a M1-L39 membrane anchor (bearing a cytosolic tail) that is linked via a G40-S70 intervening peptide to an R71-I236 non-catalytic module (containing the conserved motifs 1-3) itself linked via motif 4 to a D237-V577 catalytic module (containing the conserved motifs 5-7 of the penicilloyl serine transferases superfamily). It has been proposed that during cell septation the peptidoglycan crosslinking activity of the acyl transferase module of PBP3 is regulated by the associated M1-I236 polypeptide itself in interaction with other components of the divisome. The fold adopted by the R71-V577 polypeptide of PBP3 has been modelled by reference to the corresponding R76-S634 polypeptide of the class B Streptococcus pneumoniae PBP2x. Based on these data and the results of site-directed mutagenesis of motifs 1-3 and of peptide segments of high amphiphilicity (identified from hydrophobic moment plots), the M1-I236 polypeptide of PBP3 appears to be precisely designed to work in the way proposed. The membrane anchor and the G40-S70 sequence (containing the G57-Q66 peptide segment) upstream from the non-catalytic module have the information ensuring that PBP3 undergoes proper insertion within the divisome at the cell septation site. Motif 1 and the I74-L82 overlapping peptide segment, motif 2 and the H160-G172 overlapping peptide segment, and the G188-D197 motif 3 are located at or close to the intermodule junction. They contain the information ensuring that PBP3 folds correctly and the acyl transferase catalytic centre adopts the active configuration. The E206-V217 peptide segment is exposed at the surface of the non-catalytic module. It has the information ensuring that PBP3 fulfils its cell septation activity within the fully complemented divisome.  相似文献   

2.
Penicillin-binding protein (PBP) 5 of Enterococcus hirae ATCC 9790 belongs to the class of the high-molecular mass, low-affinity PBPs which have been correlated with penicillin resistance in most Enterococcus species. Polyclonal antibodies were raised against PBP 5 and used to detect immunologically related membrane proteins in E. faecium and E. faecalis strains. Several strains of both species were found to have a membrane protein of similar molecular mass to E. hirae PBP 5 which reacted with the antibodies. Some E. faecium strains did not react with antibodies but their derivatives with increased penicillin minimal inhibitory concentrations did. In some E. faecalis strains the lack of a PBP 5-related protein was associated with failure to select stable penicillin-resistant derivatives.  相似文献   

3.
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.  相似文献   

4.
The contribution of penicillin-binding protein 5 (PBP5) and the PBP5 synthesis repressor (Psr) to the beta-lactam resistance, growth, and cell autolysis of wild-type strain ATCC 9790 and resistant strain R40 of Enterococcus hirae was investigated by disruption or substitution of the corresponding pbp5 and psr genes by Campbell-type recombination. The resulting modifications were confirmed by hybridization and PCR. The low susceptibility of E. hirae to beta-lactams was confirmed to be largely dependent on the presence of PBP5. However, against all expectations, inactivation of psr in ATCC 9790 or complementation of R40 cells with psr did not modify the susceptibility to benzylpenicillin or the growth and cell autolysis rates. These results indicated that the psr gene does not seem to be involved in the regulation of PBP5 synthesis and consequently in beta-lactam resistance or in the regulation of cell autolysis in E. hirae.  相似文献   

5.
We determined the active site of penicillin-binding protein (PBP) 2 of Escherichia coli. A water-soluble form of PBP 2, which was constructed by site-directed mutagenesis, was purified by affinity chromatography, labeled with dansyl-penicillin, and then digested with a combination of proteases. The amino acid composition of the labeled chymotryptic peptide purified by HPLC was identical with that of the amino acid sequence, Ala-Thr-Gln-Gly-Val-Tyr-Pro-Pro-Ala-Ser330-Thr-Val-Lys-Pro (residues 321-334) of PBP 2, which was deduced from the nucleotide sequence of the pbpA gene encoding PBP 2. This amino acid sequence was verified by sequencing the labeled tryptic peptide containing the labeled chymotryptic peptide region. A mutant PBP 2 (thiol-PBP 2), constructed by site-directed mutagenesis to replace Ser330 with Cys, lacked the penicillin-binding activity. These findings provided evidence that Ser330 near the middle of the primary structure of PBP 2 is the penicillin-binding active-site residue, as predicted previously on the basis of the sequence homology. Around this active site, the sequence Ser-Xaa-Xaa-Lys was observed, which is conserved in the active-site regions of all E. coli PBPs so far studied, class A and class C beta-lactamases, and D-Ala carboxypeptidases. The COOH-terminal amino acid of PBP 2 was identified as His633.  相似文献   

6.
The nucleotide sequence of a 1884 bp DNA fragment of E. coli, carrying the gene dacB, was determined. The DNA codes for penicillin-binding protein 4 (PBP4), an enzyme of 477 amino acids, being involved as a DD-carboxypeptidase-endopeptidase in murein metabolism. The enzyme is translated with a cleavable signal peptide of 20 amino acids, which was verified by sequencing the amino-terminus of the isolated protein. The characteristic active-site fingerprints SXXK, SXN and KTG of class A beta-lactamases and penicillin-binding proteins were located in the sequence. On the basis of amino acid alignments we propose, that PBP4 and class A beta-lactamases share a common evolutionary origin but PBP4 has acquired an additional domain of 188 amino acids in the region between the SXXK and SXN elements.  相似文献   

7.
Enterococcus hirae ATCC 9790 produces a penicillin-binding protein (PBP5) of low penicillin affinity which under certain conditions can take over the functions of all the other PBPs. The 7.1-kb EcoRI fragment containing the pbp5 gene of this strain and of two mutants, of which one (E. hirae R40) overproduces PBP5 and the other (E. hirae Rev14) does not produce PBP5, was cloned in pUC18 and sequenced. In the 7.1-kb EcoRI fragment cloned from strain ATCC 9790, an open reading frame (psr) potentially encoding a 19-kDa protein was identified 1 kb upstream of the pbp5 gene. An 87-bp deletion in this element was found in the 7.1-kb EcoRI fragment cloned from strains R40 and Rev14. In addition, several base substitutions were found in the pbp5 genes of strains R40 and Rev14. One of these converted the 42nd codon, TCA, to the stop codon, TAA, in the pbp5 gene of Rev14. Escherichia coli strains were transformed with plasmids carrying the 7.1-kb EcoRI insert or a 2.6-kb HincII insert containing only the pbp5 gene of the three strains. Immunoblotting analysis of proteins expressed by these transformants showed that the 87-bp deletion in psr was associated with the PBP5 overproducer phenotype of strain R40 and the conversion of the TCA codon to the stop codon was associated with the PBP5 nonproducer phenotype of strain Rev14. None of the other nucleotide substitutions had any apparent effect on the level of PBP5 synthesized.  相似文献   

8.
Platelet basic protein (PBP) was purified from the supernatant of thrombin-stimulated, washed human platelets by ion-exchange, affinity, molecular sieve, and high-performance liquid chromatography (HPLC). The NH2-terminal amino acid sequence was determined by automated Edman degradation, revealing 9 unique residues followed by 10 residues of the established low-affinity platelet factor 4/beta-thromboglobulin (LA-PF4/beta TG) sequence. Among the nine were three basic residues, accounting for the high isoelectric point of PBP. Additional evidence for precursor status includes the immunological cross-reactivity of all three species and the ability of plasmin and trypsin to produce from PBP a species resembling beta TG in charge, hydrophobicity, and size. Tryptic peptide maps of PBP and LA-PF4 obtained by reverse-phase HPLC were very similar, and from each protein, a peptide was isolated which showed the amino acid composition predicted for the COOH-terminal tryptic peptide of beta TG. Normal platelets contained predominantly LA-PF4, with PBP ranging from 10% to 30% of total beta TG antigen. This was true even when fresh platelets were lysed with trichloroacetic acid in order to provide the most complete and rapid inhibition of proteolytic activity. beta TG itself was never detected in this situation or in the release supernatant of stimulated platelets, and only rarely in unprotected lysates. In agreement with earlier results, crude preparations of PBP were mitogenic for 3T3 cells, but highly purified preparations of PBP and LA-PF4 were free of this activity.  相似文献   

9.
The membrane-bound 43,000-Mr penicillin-binding protein no. 6 (PBP6) of Enterococcus hirae consists of a 30,000-Mr DD-peptidase/penicillin-binding domain and a approximately 130-residue C-terminal appendage. Removal of this appendage by trypsin proteolysis has no marked effect on the catalytic activity and penicillin-binding capacity of the PBP. Anchorage of the PBP in the membrane appears to be mediated by a short 15-20-residue stretch at the C-terminal end of the appendage. The sequence of the 50-residue N-terminal region of the PBP shows high degree of homology with the sequences of the corresponding regions of the PBPs5 of Escherichia coli and Bacillus subtilis. On this basis the active-site serine residue occurs at position 35 in the enterococcal PBP.  相似文献   

10.
We have determined the nucleotide sequence of the pbpA gene encoding penicillin-binding protein (PBP) 2 of Escherichia coli. The coding region for PBP 2 was 1899 base pairs in length and was preceded by a possible promoter sequence and two open reading frames. The primary structure of PBP 2, deduced from the nucleotide sequence, comprised 633 amino acid residues. The relative molecular mass was calculated to be 70867. The deduced sequence agreed with the NH2-terminal sequence of PBP 2 purified from membranes, suggesting that PBP 2 has no signal peptide. The hydropathy profile suggested that the NH2-terminal hydrophobic region (a stretch of 25 non-ionic amino acids) may anchor PBP 2 in the cytoplasmic membrane as an ectoprotein. There were nine homologous segments in the amino acid sequence of PBP 2 when compared with PBP 3 of E. coli. The active-site serine residue of PBP 2 was predicted to be Ser-330. Around this putative active-site serine residue was found the conserved sequence of Ser-Xaa-Xaa-Lys, which has been identified in all of the other E. coli PBPs so far studied (PBPs 1A, 1B, 3, 5 and 6) and class A and class C beta-lactamases. In the higher-molecular-mass PBPs 1A, 1B, 2 and 3, Ser-Xaa-Xaa-Lys-Pro was conserved. In the putative peptidoglycan transpeptidase domain there were six amino acid residues, which are common only in the PBPs of higher molecular mass.  相似文献   

11.
Penicillin-binding proteins (PBPs) are ubiquitous bacterial enzymes involved in cell wall biosynthesis. The development of new PBP inhibitors is a potentially viable strategy for developing new antibacterial agents. Several potential transition state analogue inhibitors for the PBPs were synthesized, including peptide chloromethyl ketones, trifluoromethyl ketones, aldehydes, and boronic acids. These agents were characterized chemically, stereochemically, and as inhibitors of a set of low molecular mass PBPs: Escherichia coli (EC) PBP 5, Neisseria gonorrhoeae (NG) PBP 3, and NG PBP 4. A peptide boronic acid was the most effective PBP inhibitor in the series, with a preference observed for a d-boroAla-based over an l-boroAla-based inhibitor, as expected given that physiological PBP substrates are based on d-Ala at the cleavage site. The lowest K(I) of 370 nM was obtained for NG PBP 3 inhibition by Boc-l-Lys(Cbz)-d-boroAla (10b). Competitive inhibition was observed for this enzyme-inhibitor pair, as expected for an active site-directed inhibitor. For the three PBPs included in this study, an inverse correlation was observed between the values for log K(I) with 10b and the values for log(k(cat)/K(m)) for activity against the analogous substrate, and K(m)/K(I) ratios were 90, 1900, and 9600 for NG PBP 4, EC PBP 5, and NG PBP 3, respectively. These results demonstrate that peptide boronic acids can be effective transition state analogue inhibitors for the PBPs and provide a basis for the use of these agents as probes of PBP structure, function, and mechanism, as well as a possible basis for the development of new PBP-targeted antibacterial agents.  相似文献   

12.
The low susceptibility of enterococci to beta-lactams is due to the activity of the low-affinity penicillin-binding protein 5 (PBP5). One important feature of PBP5 is its ability to substitute for most, if not all, penicillin-binding proteins when they are inhibited. That substitution activity was analyzed in Enterococcus hirae SL2, a mutant whose pbp5 gene was interrupted by the nisRK genes and whose PBP3 synthesis was submitted to nisin induction. Noninduced SL2 cells were unable to divide except when plasmid-borne pbp5 genes were present, provided that the PBP5 active site was functional. Potential protein-protein interaction sites of the PBP5 N-terminal module were mutagenized by site-directed mutagenesis. The T167-L184 region (designated site D) appeared to be an essential intramolecular site needed for the stability of the protein. Mutations made in the two globular domains present in the N-terminal module indicated that they were needed for the suppletive activity. The P197-N209 segment (site E) in one of these domains seemed to be particularly important, as single and double mutations reduced or almost completely abolished, respectively, the action of PBP5.  相似文献   

13.
In Escherichia coli, cell division is mediated by the concerted action of about 12 proteins that assemble at the division site to presumably form a complex called the divisome. Among these essential division proteins, the multimodular class B penicillin-binding protein 3 (PBP3), which is specifically involved in septal peptidoglycan synthesis, consists of a short intracellular M1-R23 peptide fused to a F24-L39 membrane anchor that is linked via a G40-S70 peptide to an R71-I236 noncatalytic module itself linked to a D237-V577 catalytic penicillin-binding module. On the basis of localization analyses of PBP3 mutants fused to green fluorescent protein by fluorescence microscopy, it appears that the first 56 amino acid residues of PBP3 containing the membrane anchor and the G40-E56 peptide contain the structural determinants required to target the protein to the cell division site and that none of the putative protein interaction sites present in the noncatalytic module are essential for the positioning of the protein to the division site. Based on the effects of increasing production of FtsQ or FtsW on the division of cells expressing PBP3 mutants, it is suggested that these proteins could interact. We postulate that FtsQ could play a role in regulating the assembly of these division proteins at the division site and the activity of the peptidoglycan assembly machineries within the divisome.  相似文献   

14.
The penicillin-binding proteins (PBPs) are ubiquitous bacterial enzymes involved in cell wall biosynthesis, and are the targets of the beta-lactam antibiotics. The low molecular mass Neisseria gonorrhoeae PBP 4 (NG PBP 4) is the fourth PBP revealed in the gonococcal genome. NG PBP 4 was cloned, overexpressed, purified, and characterized for beta-lactam binding, DD-carboxypeptidase activity, acyl-donor substrate specificity, transpeptidase activity, inhibition by a number of active site directed reagents, and pH profile. NG PBP 4 was efficiently acylated by penicillin (30,000 m-1.s-1). Against a set of five alpha- and epsilon-substituted l-Lys-D-Ala-D-Ala substrates, NG PBP 4 exhibited wide variation in specificity with a preference for N epsilon-acylated substrates, suggesting a possible preference for crosslinked pentapeptide substrates in the cell wall. Substrates with an N epsilon-Cbz group demonstrated pronounced substrate inhibition. NG PBP 4 showed 30-fold higher activity against the depsipeptide Lac-ester substrate than against the analogous peptide substrate, an indication that k2 (acylation) is rate determining for carboxypeptidase activity. No transpeptidase activity was apparent in a model transpeptidase reaction. Among a number of active site-directed agents, N-chlorosuccinimide, elastinal, iodoacetamide, iodoacetic acid, and phenylglyoxal gave substantial inhibition, and methyl boronic acid gave modest inhibition. The pH profile for activity against Ac2-l-Lys-D-Ala-d-Ala (kcat/Km) was bell-shaped, with pKa values at 6.9 and 10.1. Comparison of the enzymatic properties of NG PBP 4 with other DD-carboxypeptidases highlights both similarities and differences within these enzymes, and suggests the possibility of common mechanistic roles for the two highly conserved active site lysines in Class A and C low molecular mass PBPs.  相似文献   

15.
The penicillin-binding protein (PBP) 1b of Escherichia coli catalyses the assembly of lipid-transported N-acetyl glucosaminyl-beta-1, 4-N-acetylmuramoyl-L-alanyl-gamma-D-glutamyl-(L)-meso-diaminopimelyl+ ++- (L)-D-alanyl-D-alanine disaccharide pentapeptide units into polymeric peptidoglycan. These units are phosphodiester linked, at C1 of muramic acid, to a C55 undecaprenyl carrier. PBP1b has been purified in the form of His tag (M46-N844) PBP1bgamma. This derivative provides the host cell in which it is produced with a functional wall peptidoglycan. His tag (M46-N844) PBP1bgamma possesses an amino-terminal hydrophobic segment, which serves as transmembrane spanner of the native PBP. This segment is linked, via an congruent with 100-amino-acid insert, to a D198-G435 glycosyl transferase module that possesses the five motifs characteristic of the PBPs of class A. In in vitro assays, the glycosyl transferase of the PBP catalyses the synthesis of linear glycan chains from the lipid carrier with an efficiency of congruent with 39 000 M-1 s-1. Glu-233, of motif 1, is central to the catalysed reaction. It is proposed that the Glu-233 gamma-COOH donates its proton to the oxygen atom of the scissile phosphoester bond of the lipid carrier, leading to the formation of an oxocarbonium cation, which then undergoes attack by the 4-OH group of a nucleophile N-acetylglucosamine. Asp-234 of motif 1 or Glu-290 of motif 3 could be involved in the stabilization of the oxocarbonium cation and the activation of the 4-OH group of the N-acetylglucosamine. In turn, Tyr-310 of motif 4 is an important component of the amino acid sequence-folding information. The glycosyl transferase module of PBP1b, the lysozymes and the lytic transglycosylase Slt70 have much the same catalytic machinery. They might be members of the same superfamily. The glycosyl transferase module is linked, via a short junction site, to the amino end of a Q447-N844 acyl transferase module, which possesses the catalytic centre-defining motifs of the penicilloyl serine transferases superfamily. In in vitro assays with the lipid precursor and in the presence of penicillin at concentrations sufficient to derivatize the active-site serine 510 of the acyl transferase, the rate of glycan chain synthesis is unmodified, showing that the functioning of the glycosyl transferase is acyl transferase independent. In the absence of penicillin, the products of the Ser-510-assisted double-proton shuttle are glycan strands substituted by cross-linked tetrapeptide-pentapeptide and tetrapeptide-tetrapeptide dimers and uncross-linked pentapeptide and tetrapeptide monomers. The acyl transferase of the PBP also catalyses aminolysis and hydrolysis of properly structured thiolesters, but it lacks activity on D-alanyl-D-alanine-terminated peptides. This substrate specificity suggests that carbonyl donor activity requires the attachment of the pentapeptides to the glycan chains made by the glycosyl transferase, and it implies that one and the same PBP molecule catalyses transglycosylation and peptide cross-linking in a sequential manner. Attempts to produce truncated forms of the PBP lead to the conclusion that the multimodular polypeptide chain behaves as an integrated folding entity during PBP1b biogenesis.  相似文献   

16.
The bacterial acyltransferases of the SxxK superfamily vary enormously in sequence and function, with conservation of particular amino acid groups and all-alpha and alpha/beta folds. They occur as independent entities (free-standing polypeptides) and as modules linked to other polypeptides (protein fusions). They can be classified into three groups. The group I SxxK D,D-acyltransferases are ubiquitous in the bacterial world. They invariably bear the motifs SxxK, SxN(D), and KT(S)G. Anchored in the plasma membrane with the bulk of the polypeptide chain exposed on the outer face of it, they are implicated in the synthesis of wall peptidoglycans of the most frequently encountered (4-->3) type. They are inactivated by penicillin and other beta-lactam antibiotics acting as suicide carbonyl donors in the form of penicillin-binding proteins (PBPs). They are components of a morphogenetic apparatus which, as a whole, controls multiple parameters such as shape and size and allows the bacterial cells to enlarge and duplicate their particular pattern. Class A PBP fusions comprise a glycosyltransferase module fused to an SxxK acyltransferase of class A. Class B PBP fusions comprise a linker, i.e., protein recognition, module fused to an SxxK acyltransferase of class B. They ensure the remodeling of the (4-->3) peptidoglycans in a cell cycle-dependent manner. The free-standing PBPs hydrolyze D,D peptide bonds. The group II SxxK acyltransferases frequently have a partially modified bar code, but the SxxK motif is invariant. They react with penicillin in various ways and illustrate the great plasticity of the catalytic centers. The secreted free-standing PBPs, the serine beta-lactamases, and the penicillin sensors of several penicillin sensory transducers help the D,D-acyltransferases of group I escape penicillin action. The group III SxxK acyltransferases are indistinguishable from the PBP fusion proteins of group I in motifs and membrane topology, but they resist penicillin. They are referred to as Pen(r) protein fusions. Plausible hypotheses are put forward on the roles that the Pen(r) protein fusions, acting as L,D-acyltransferases, may play in the (3-->3) peptidoglycan-synthesizing molecular machines. Shifting the wall peptidoglycan from the (4-->3) type to the (3-->3) type could help Mycobacterium tuberculosis and Mycobacterium leprae survive by making them penicillin resistant.  相似文献   

17.
Abstract Low-affinity penicillin binding proteins are particular membrane proteins, in several Gram-positive bacteria, which are involved in β-lactam antibiotic resistance. The structural gene for the low-affinity penicillin binding protein 5 (PBP5) of Enterococcus faecalis was cloned and sequenced. From the sequence of the 3378 bp, a 2040 bp coding region was identified. From biochemical analysis it emerges that E. faecalis PBP5 is a type II membrane protein with an uncleaved N-terminal and is composed of 679 amino acids with a molecular weight of 74055. This protein showed 48 and 33% of identity with Enterococcus hirae PBP5 and Staphylococcus aureus PBP2a, both low-affinity PBPs involved in β-lactam resistance. Anti-PBP5 antibodies cross-reacted with a membrane protein present in other species of enterococci, but the entire gene fragment cloned hybridized only with DNAs of E. faecalis strains, thus suggesting that genes coding for low-affinity PBPs of enterococci are not stictly homologous. In this experiment digoxigenin-labelled E. faecalis DNA was used.  相似文献   

18.
Escherichia coli PBP5, a DD-carboxypeptidase (DD-CPase), helps in maintaining cell shape and intrinsic β-lactam resistance. Though PBP5 does not have β-lactamase activity under physiological pH, it has a common but shorter Ω-like loop resembling class A β-lactamases. However, such Ω-like loop lacks the key glutamic acid residue that is present in β-lactamases. It is speculated that β-lactamases and DD-CPases might have undergone divergent evolution leading to distinct enzymes with different substrate specificities and functions indicating the versatility of the Ω-loops. Nonetheless, direct experimental evidence favoring the idea is insufficient. Here, aiming to investigate the effect of introducing a glutamic acid residue in the PBP5 Ω-like loop, we substituted A184 to E to create PBP5_A184E. Expression of PBP5_A184E in E. coli ?PBP5 mutant elevates the β-lactam resistance, especially for cephalosporins. However, like PBP5, PBP5_A184E has the ability to complement the aberrantly shaped E. coli septuple PBP mutant indicating an unaffected in vivo DD-CPase activity. Biochemical and bioinformatics analyses have substantiated the dual enzyme nature of the mutated enzyme possessing both DD-CPase and β-lactamase activities. Therefore, substitution of A184 to E of Ω-like loop alone can introduce the cephalosporinase activity in E. coli PBP5 supporting the phenomenon of a single amino acid polymorphism.  相似文献   

19.
Chromatographic peptide mapping of lysyl endopeptidase digests of penicillin-binding protein 3 (PBP 3) of Escherichia coli revealed peptides that differed in retention time between the precursor and mature forms. The peptides were purified from a processing-defective (prc) mutant and a wild-type (prc+) strain. These peptides were identified as the C-terminal region of the precursor form and mature PBP 3 by amino acid sequencing. Each of the C-terminal peptides was cleaved into two fragments by trypsin digestion. By sequencing the resultant carboxyl-side fragment derived from the mature form, it was concluded that the C-terminal residue of mature PBP 3 was Val-577, and thus the Val-577-Ile-578 bond is the cleavage site for processing. This conclusion was consistent with the amino acid compositions of the relevant peptides, which suggested that the peptide from the cleavage site to the end of the deduced sequence (Ile-578-Ser-588) was present in the precursor but absent in the mature form. One lysyl peptide bond resisted both lysyl endopeptidase and trypsin and remained uncleaved in the peptide analyzed above.  相似文献   

20.
Enterococcus hirae ATCC 9790 is a Gram-positive lactic acid bacterium that has been used in basic research for over 4 decades. Here we report the sequence and annotation of the 2.8-Mb genome of E. hirae and its endemic 29-kb plasmid pTG9790.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号