首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物对硅的吸收转运机制研究进展   总被引:2,自引:0,他引:2  
硅(Si)能缓解生物与非生物胁迫对植物的毒害作用,Si的吸收转运是由Si转运蛋白介导的.最近,多个Si转运蛋白(Lsi)基因相继在水稻、大麦和玉米中被克隆出来,并在Si的吸收转运机制方面取得了很大进展.水稻OsLsi在根组织中呈极性分布,OsLsi1定位在根外皮层和内皮层凯氏带细胞外侧质膜,负责将外部溶液中的单硅酸转运到皮层细胞内.OsLsi2定位在凯氏带细胞内侧质膜,在外皮层中负责将Si输出到通气组织质外体中,在内皮层与OsLsi1协同作用将Si转运到中柱中.导管中的Si通过蒸腾流转运到地上部,再由定位在叶鞘和叶片木质部薄壁细胞靠近导管一侧的OsLsi6负责木质部Si的卸载和分配.在大麦和玉米中,ZmLsi1/HvLsi1定位在根表皮和皮层细胞外侧质膜负责Si的吸收,然后Si通过共质体途径被转运到内皮层凯氏带细胞中,再由ZmLsi2/HvLsi2输出转运到中柱中.ZmLsi6在细胞中的定位和活性与OsLsi6相似,推测其可能具有类似的功能,但大麦Lsi6至今未见报道.所以,Si转运机制仍需要进一步研究.  相似文献   

2.
Identification of maize silicon influx transporters   总被引:1,自引:1,他引:0  
Maize (Zea mays L.) shows a high accumulation of silicon (Si),but transporters involved in the uptake and distribution havenot been identified. In the present study, we isolated two genes(ZmLsi1 and ZmLsi6), which are homologous to rice influx Sitransporter OsLsi1. Heterologous expression in Xenopus laevisoocytes showed that both ZmLsi1 and ZmLsi6 are permeable tosilicic acid. ZmLsi1 was mainly expressed in the roots. By contrast,ZmLsi6 was expressed more in the leaf sheaths and blades. Differentfrom OsLsi1, the expression level of both ZmLsi1 and ZmLsi6was unaffected by Si supply. Immunostaining showed that ZmLsi1was localized on the plasma membrane of the distal side of rootepidermal and hypodermal cells in the seminal and crown roots,and also in cortex cells in lateral roots. In the shoots, ZmLsi6was found in the xylem parenchyma cells that are adjacent tothe vessels in both leaf sheaths and leaf blades. ZmLsi6 inthe leaf sheaths and blades also exhibited polar localizationon the side facing towards the vessel. Taken together, it canbe concluded that ZmLsi1 is an influx transporter of Si, whichis responsible for the transport of Si from the external solutionto the root cells and that ZmLsi6 mainly functions as a Si transporterfor xylem unloading.  相似文献   

3.
Silicon (Si) accumulation in organs and cells is one of the most prominent characteristics of plants of the family Poaceae. Many species from this family are used as forage plants for animal feeding. The present study investigates in Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. cv. Marandu: (1) the dry matter production and Si content in shoot due to soil Si fertilizations; (2) the Si distribution among shoot parts; and (3) the silica deposition and localization in leaves. Plants of B. brizantha cv. Marandu were grown under contrasting Si supplies in soil and nutrient solution. Silica deposition and distribution in grass leaf blades were observed using light microscope and scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDXS). Silicon concentration in the B. brizantha shoot increased according to the Si supply. Silicon in grass leaves decreased following the order: mature leaf blades > recently expanded leaf blades > non-expanded leaf blades. Silicon accumulates mainly on the upper (adaxial) epidermis of the grass leaf blades and, especially, on the bulliform cells. The Si distribution on adaxial leaf blade surface is non uniform and reflects a silica deposition exclusively on the cell wall of bulliform cells.  相似文献   

4.
The concentration of essential mineral nutrients in the edible portion of plants such as grains may affect the nutritional value of these foods, while concentrations of toxic minerals in the plant are matter of food safety. Minerals taken up by the roots from soils are normally redirected at plant nodes before they are finally transported into developing seeds. However, the molecular mechanisms involved in this process have not been identified so far. Herein, we report on a transporter (Lsi6) responsible for the redirection of a plant nutrient at the node. Lsi6 is a silicon transporter in rice (Oryza sativa), and its expression in node I below the panicles is greatly enhanced when the panicle is completely emerged. Lsi6 is mainly localized at the xylem transfer cells located at the outer boundary region of the enlarged large vascular bundles in node I. Knockout of Lsi6 decreased Si accumulation in the panicles but increased Si accumulation in the flag leaf. These results suggest that Lsi6 is a transporter involved in intervascular transfer (i.e., transfer of silicon from the large vascular bundles coming from the roots to the diffuse vascular bundles connected to the panicles). These findings will be useful for selectively enhancing the accumulation of essential nutrients and reducing toxic minerals in the edible portion of cereals.  相似文献   

5.
Rice (Oryza sativa) takes up arsenite mainly through the silicic acid transport pathway. Understanding the uptake and sequestration of arsenic (As) into the rice plant is important for developing strategies to reduce As concentration in rice grain. In this study, the cellular and subcellular distributions of As and silicon (Si) in rice roots were investigated using high-pressure freezing, high-resolution secondary ion mass spectrometry, and transmission electron microscopy. Rice plants, both the lsi2 mutant lacking the Si/arsenite efflux transporter Lsi2 and its wild-type cultivar, with or without an iron plaque, were treated with arsenate or arsenite. The formation of iron plaque on the root surface resulted in strong accumulation of As and phosphorous on the epidermis. The lsi2 mutant showed stronger As accumulation in the endodermal vacuoles, where the Lsi2 transporter is located in the plasma membranes, than the wild-type line. As also accumulated in the vacuoles of some xylem parenchyma cells and in some pericycle cells, particularly in the wild-type mature root zone. Vacuolar accumulation of As is associated with sulfur, suggesting that As may be stored as arsenite-phytochelatin complexes. Si was localized in the cell walls of the endodermal cells with little apparent effect of the Lsi2 mutation on its distribution. This study reveals the vacuolar sequestration of As in rice roots and contrasting patterns of As and Si subcellular localization, despite both being transported across the plasma membranes by the same transporters.  相似文献   

6.
Inter‐vascular transfer in rice (Oryza sativa) nodes is required for delivering mineral elements to developing tissues, which is mediated by various transporters in the nodes. However, the effect of these transporters on distribution of mineral elements in the nodes at a cellular level is still unknown. Here, we established a protocol for bioimaging of multiple elements at a cellular level in rice node by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS), and compared the mineral distribution profile between wild‐type (WT) rice and mutants. Both relative comparison of mineral distribution normalized by endogenous 13C and quantitative analysis using spiked standards combined with soft ablation gave valid results. Overall, macro‐nutrients such as K and Mg were accumulated more in the phloem region, while micro‐nutrients such as Fe and Zn were highly accumulated at the inter‐vascular tissues of the node. In mutants of nodal Zn transporter OsHMA2, Zn localization pattern in the node tissues did not differ from that of WT; however, Zn accumulation in the inter‐vascular tissues was lower in uppermost node I but higher in the third upper node III compared with the WT. In contrast, Si deposition in the mutants of three nodal Si transporters Lsi2, Lsi3 and Lsi6 showed different patterns, which are consistent with the localization of these transporters. This improved LA‐ICP‐MS analysis combined with functional characterization of transporters will provide further insight into mineral element distribution mechanisms in rice and other plant species.  相似文献   

7.
Yamaji N  Ma JF 《Plant physiology》2007,143(3):1306-1313
Rice (Oryza sativa) is a typical silicon (Si) accumulator and requires a large amount of Si for high-yield production. Recently, a gene (Low silicon rice1 [Lsi1]) encoding a Si transporter was identified in rice roots. Here, we characterized Lsi1 in terms of spatial distribution and temporal variation using both physiological and molecular approaches. Results from a multicompartment transport box experiment showed that the major site for Si uptake was located at the basal zone (>10 mm from the root tip) of the roots rather than at the root tips (<10 mm from the root tip). Consistent with the Si uptake pattern, Lsi1 expression and distribution of the Lsi1 protein were found only in the basal zone of roots. In the basal zones of the seminal, crown, and lateral roots, the Lsi1 protein showed a polar localization at the distal side of both the exodermis and endodermis, where the Casparian bands are formed. This indicates that Lsi1 is required for the transport of Si through the cells of the exodermis and endodermis. Expression of Lsi1 displayed a distinct diurnal pattern. Furthermore, expression was transiently enhanced around the heading stage, which coincides with a high Si requirement during this growth stage. Expression was down-regulated by dehydration stress and abscisic acid, suggesting that expression of Lsi1 may be regulated by abscisic acid.  相似文献   

8.
Silicon (Si) uptake has been extensively examined in rice (Oryza sativa), but it is poorly understood in other gramineous crops. We identified Low Silicon Rice 2 (Lsi2)-like Si efflux transporters from two important gramineous crops: maize (Zea mays) and barley (Hordeum vulgare). Both maize and barley Lsi2 expressed in Xenopus laevis oocytes showed Si efflux transport activity. Furthermore, barley Lsi2 was able to recover Si uptake in a rice mutant defective in Si efflux. Maize and barley Lsi2 were only expressed in the roots. Expression of maize and barley Lsi2 was downregulated in response to exogenously applied Si. Moreover, there was a significant positive correlation between the ability of roots to absorb Si and the expression levels of Lsi2 in eight barley cultivars, suggesting that Lsi2 is a key Si transporter in barley. Immunostaining showed that maize and barley Lsi2 localized only at the endodermis, with no polarity. Protein gel blot analysis indicated that maize and barley Lsi2 localized on the plasma membrane. The unique features of maize and barley Si influx and efflux transporters, including their cell-type specificity and the lack of polarity of their localization in Lsi2, indicate that these crops have a different Si uptake system from that in rice.  相似文献   

9.
10.
Silicon (Si) is a nonessential, beneficial micronutrient for plants. It increases the plant stress tolerance in relation to its accumulation capacity. In this work, root Si transporter genes were characterized in 17 different plants and inferred for their Si-accumulation status. A total of 62 Si transporter genes (31 Lsi1 and 31 Lsi2) were identified in studied plants. Lsi1s were 261–324 residues protein with a MIP family domain whereas Lsi2s were 472–547 residues with a citrate transporter family domain. Lsi1s possessed characteristic sequence features that can be employed as benchmark in prediction of Si-accumulation status/capacity of the plants. Silicic acid selectivity in Lsi1s was associated with two highly conserved NPA (Asn-Pro-Ala) motifs and a Gly-Ser-Gly-Arg (GSGR) ar/R filter. Two NPA regions were present in all Lsi1 members but some Ala substituted with Ser or Val. GSGR filter was only available in the proposed high and moderate Si accumulators. In phylogeny, Lsi1s formed three clusters as low, moderate and high Si accumulators based on tree topology and availability of GSGR filter. Low-accumulators contained filters WIGR, AIGR, FAAR, WVAR and AVAR, high-accumulators only with GSGR filter, and moderate-accumulators mostly with GSGR but some with A/CSGR filters. A positive correlation was also available between sequence homology and Si-accumulation status of the tested plants. Thus, availability of GSGR selectivity filter and sequence homology degree could be used as signatures in prediction of Si-accumulation status in experimentally uncharacterized plants. Moreover, interaction partner and expression profile analyses implicated the involvement of Si transporters in plant stress tolerance.  相似文献   

11.
Laser induced breakdown spectroscopy (LIBS) has been used to perform in situ analysis of major and minor elements present in the different parts of the Bermuda grass (Cynodon dactylon). In situ, point detection/analysis of the elements in plants without any sample preparation has been demonstrated. LIBS spectra of the different parts (leaf blade, leaf sheath and stem) of fresh C. dactylon plant have been recorded to study the pattern of silica deposition in its different parts. Atomic lines of Si, Mg, Ca, C, Al, Zn, N, Sr, etc. have been observed in the LIBS spectra of the C. dactylon. A close observation of LIBS spectra of the different parts of the plants shows that silica concentration is greater in leaf blades than leaf sheaths and stems. The results obtained with LIBS analysis are also compared with the number density of phytoliths deposited in different parts of C. dactylon. It is observed that the highest silicified cell frequency is present in leaf blades followed by leaf sheaths and stems which is in close agreement with LIBS analysis.  相似文献   

12.
Silicon (Si) is a beneficial element for plant growth. In barley (Hordeum vulgare), Si uptake by the roots is mainly mediated by a Si channel, Low Silicon1 (HvLsi1), and an efflux transporter, HvLsi2. However, transporters involved in the distribution of Si in the shoots have not been identified. Here, we report the functional characterization of a homolog of HvLsi1, HvLsi6. HvLsi6 showed permeability for Si and localized to the plasma membrane. At the vegetative growth stage, HvLsi6 was expressed in both the roots and shoots. The expression level was unaffected by Si supply. In the roots, HvLsi6 was localized in epidermis and cortex cells of the tips, while in the leaf blades and sheaths, HvLsi6 was only localized at parenchyma cells of vascular bundles. At the reproductive growth stage, high expression of HvLsi6 was also found in the nodes. HvLsi6 in node I was polarly located at the transfer cells surrounding the enlarged vascular bundles toward the numerous xylem vessels. These results suggest that HvLsi6 is involved in Si uptake in the root tips, xylem unloading of Si in leaf blade and sheath, and intervascular transfer of Si in the nodes. Furthermore, HvLsi2 was found to be localized at the parenchyma cell layer adjacent to the transfer cells with opposite polarity of HvLsi6, suggesting that the coupling of HvLsi6 and HvLsi2 is involved in the intervascular transfer of Si at the nodes. Si translocated via the enlarged vascular bundles is unloaded to the transfer cells by HvLsi6, followed by HvLsi2 to reload Si to the diffuse vascular bundles, which are connected to the upper part of the plant, especially the panicles, the ultimate Si sink.Silicon (Si) is a beneficial element for plant growth. It enhances the resistance of plants to various biotic and abiotic stresses (Epstein, 1999; Ma and Takahashi, 2002; Ma and Yamaji, 2006). For example, Si reduces the epidemics of both leaf and panicle blast in rice (Oryza sativa; Datnoff and Rodrigues, 2005) and decreases the incidence of powdery mildew in cucumber (Cucumis sativus), barley (Hordeum vulgare), and wheat (Triticum aestivum; Fauteux et al., 2005). Si also suppresses insect pests such as stem borer (Chilo suppressalis), brown planthopper (Nilaparvata lugens), and rice green leafhopper (Nephotettix cincticeps; Savant et al., 1997). Resistance to the damage by wild rabbit in wheat is also enhanced by an increased amount of Si in leaf tissue (Cotterill et al., 2007). Si is also able to alleviate lodging, drought, and low- and high-temperature stresses (Ma, 2004). The beneficial effects of Si under phosphate deficiency, phosphate excess, and manganese and salt toxicity stresses have been observed in many plants (Ma and Takahashi, 2002). Usually, the more Si that accumulates in the shoots, the greater its effect in enhancing the plant’s response. This is because most effects of Si are expressed through the formation of silica gel, which is deposited on leaves, stems, and other organs of plants (Ma and Yamaji, 2006). Therefore, for the plant to benefit from Si, a high accumulation is required. However, Si accumulation greatly varies with plant species, and this difference has been attributed to the ability of plants to take up Si.Transporters responsible for Si uptake by roots have been identified in several plant species, including barley, maize (Zea mays), pumpkin (Cucurbita moschata), rice, wheat (Ma et al., 2011), and most recently in horsetail (Equisetum arvense; EaNIP3s [for Nod26-like major intrinsic protein3]; Grégoire et al., 2012). Two different types of transporter, Si-permeable channel and efflux transporter, are involved in the Si-uptake process. Low Silicon1 (Lsi1) belongs to a NIP subfamily of aquaporin-like proteins and functions as a Si-permeable channel. Lsi1 in rice is localized in the distal side of root exodermis and endodermis (Ma et al., 2006), but Lsi1 in barley, maize, and pumpkin is localized in the epidermis and cortex (Chiba et al., 2009; Mitani et al., 2009b, 2011). On the other hand, Lsi2 functions as an efflux Si transporter and belongs to a putative anion transporter family without any similarity to Lsi1. Lsi2 in rice is also localized at the root exodermis and endodermis as Lsi1, but it is polarly localized at the proximal side (Ma et al., 2007). By contrast, Lsi2 in barley and maize is localized only to the endodermis of roots. Furthermore, these transporters do not show polar localization in barley and maize (Mitani et al., 2009a). Therefore, Si uptake mediated by Lsi1 and Lsi2 shows different pathways between rice and other plant species (Ma et al., 2011).Following uptake by the roots through Lsi1 and Lsi2, Si is translocated to the aboveground part and distributed in different tissues. Lsi6, a homolog of Lsi1, is involved in xylem unloading of Si in rice (Yamaji et al., 2008). Lsi6 is localized on the adaxial side of the xylem parenchyma cells in the leaf sheaths and leaf blades. Knockout of Lsi6 resulted in altered distribution of Si in the leaf cells. Furthermore, at the reproductive growth stage of rice, Lsi6 is also highly expressed at the nodes (Yamaji and Ma, 2009). At node I below the panicle, Lsi6 is mainly localized at the xylem transfer cells with polarity facing toward the xylem vessel (Yamaji and Ma, 2009). Knockout of Lsi6 decreased Si accumulation in the panicle but increased Si accumulation in the flag leaf. These findings indicate that Lsi6 is also required for the intervascular transfer of Si in rice, transferring Si from the enlarged vascular bundles coming from the roots to the diffuse vascular bundles connected to the panicle.Barley is a Si-accumulating species, although the accumulation extent is lower than that of rice. Transporters responsible for Si uptake in barley roots have been identified (Chiba et al., 2009; Mitani et al., 2009a); however, transporters for Si distribution in aboveground plant tissues are unknown. In this study, we functionally characterized a rice Lsi6 homolog gene in barley, HvLsi6, in terms of transport activity and expression pattern, as well as cellular and subcellular localizations. We found that HvLsi6 is probably involved in Si uptake in the root tip, xylem unloading in the leaf, and intervascular transfer of Si at the nodes in barley. We further found that HvLsi2 was also expressed in the nodes and involved in the intervascular transfer by coupling with HvLsi6.  相似文献   

13.
Silicon (Si) accumulation in shoots differs greatly with plant species, but the molecular mechanisms for this interspecific difference are unknown. Here, we isolated homologous genes of rice Si influx (SlLsi1) and efflux (SlLsi2) transporter genes in tomato (Solanum lycopersicum L.) and functionally characterized these genes. SlLsi1 showed transport activity for Si when expressed in both rice lsi1 mutant and Xenopus laevis oocytes. SlLsi1 was constitutively expressed in the roots. Immunostaining showed that SlLsi1 was localized at the plasma membrane of both root tip and basal region without polarity. Furthermore, overexpression of SlLsi1 in tomato increased Si concentration in the roots and root cell sap but did not alter the Si concentration in the shoots. By contrast, two Lsi2-like proteins did not show efflux transport activity for Si in Xenopus oocytes. However, when functional CsLsi2 from cucumber was expressed in tomato, the Si uptake was significantly increased, resulting in higher Si accumulation in the leaves and enhanced tolerance of the leaves to water deficit and high temperature. Our results suggest that the low Si accumulation in tomato is attributed to the lack of functional Si efflux transporter Lsi2 required for active Si uptake although SlLsi1 is functional.  相似文献   

14.
The location and some morphological, anatomical, and functional aspects of the gravity-sensitive pulvini of a selected number of grass shoots are examined. There are two distinct gravity-sensitive regions near the nodal regions of Gramineae. One, the leaf sheath pulvinus, is located at the base of the sheathing leaf bases, and is characteristic of the subfamily Festucoideae. The other, the internodal pulvinus, is located at the base of the internode, a little above the nodal joint. Most members of the Panicoideae possess internodal pulvini, in addition to more or less developed leaf sheath pulvini. Three members of the Oryzoideae examined possess leaf sheath pulvini only, while Phragmites australis (Arundinoideae) possesses both leaf sheath and internodal pulvini. Leaf sheath pulvini of some grasses develop hairs, cork-silica cell pairs or stomatal apparatuses over the epidermis while many others are devoid of any such idioblasts. Both the leaf sheath and internodal pulvini of all grasses examined preferentially exclude, or accumulate very little silica, whereas the regions of the shoot immediately above and below the pulvini in these same grasses accumulate large quantities of silica. Pulvini remain unsilicified or poorly silicified throughout their life and even after several days following geotropic bending. Pulvini are also distinguished from the regions above and below them by the lack of lignin in the bundle cap cells. Lignin is found only in the xylem vascular tissue, and this consists of annular and helical vessel elements only. The bundle cap cells are rich in pectin and are described as collenchymatous. All pulvini possess specialized zones of cells containing starch statoliths. In response to horizontal displacement of the shoots, the lower side of the pulvini grows by cell elongation only. The collenchymatous cells stretch in a manner that results in alternately thin and thick regions of cell wall.  相似文献   

15.
16.
Ash and silica content and their depositional patterns in differenttissues of the mature corn plant (Zea mays L.) were determined.Ash and silica were highest in the leaf blades (up to 16.6 and10.9 per cent, respectively) followed by the leaf sheath, tassel,roots, stem epidermis and pith, and ear husk. The percentageof ash as silica was also highest in the leaves. Silica wasextremely low in the kernels. The upper stem epidermis and pithcontained nearly twice the silica content as did the lower portion.The patterns of ash and silica distribution were similar inplants grown in two different areas of Kansas, but were in lowerconcentration in the leaves and leaf sheaths from the area withlower soluble silica in the soil. Silica was deposited in theepidermis in a continuous matrix with cell walls showing serratedinterlocking margins in both leaves and stem. Rows of lobedphytoliths of denser silica were found in the epidermis as wellas highly silicified guard cells and trichomes. The silica matrixof the epidermis appears smooth on the outer surface and porousor spongy on the inner surface. Zea mays L. Corn, maize, ash content, silica deposition, scanning electron microscopy  相似文献   

17.
Uptake system of silicon in different plant species   总被引:15,自引:0,他引:15  
The accumulation of silicon (Si) in the shoots varies considerably among plant species, but the mechanism responsible for this variation is poorly understood. The uptake system of Si was investigated in terms of the radial transport from the external solution to the root cortical cells and the release of Si from the cortical cells to the xylem in rice, cucumber, and tomato, which differ greatly in shoot Si concentration. Symplasmic solutions of the root tips were extracted by centrifugation. The concentrations of Si in the root-cell symplast in all species were higher than that in the external solution, although the concentration in rice was 3- and 5-fold higher than that in cucumber and tomato, respectively. A kinetic study showed that the radial transport of Si was mediated by a transporter with a K(m) value of 0.15 mM in all species, but with different V(max) values in the order of rice>cucumber>tomato. In the presence of the metabolic inhibitor 2,4-dinitrophenol, and at low temperature, the Si concentration in the root-cell symplast decreased to a level similar to that of the apoplasmic solution. These results suggest that both transporter-mediated transport and passive diffusion of Si are involved in the radial transport of Si and that the transporter-mediated transport is an energy-dependent process. The Si concentration of xylem sap in rice was 20- and 100-fold higher than that in cucumber and tomato, respectively. In contrast to rice, the Si concentration in the xylem sap was lower than that in the external solution in cucumber and tomato. A kinetic study showed that xylem loading of Si was also mediated by a kind of transporter in rice, but by passive diffusion in cucumber and tomato. These results indicate that a higher density of transporter for radial transport and the presence of a transporter for xylem loading are responsible for the high Si accumulation in rice.  相似文献   

18.
19.
Summary The data presented throughout this paper indicate that soluble Si in plant tissues can give useful information about the Si-status of plants. In fact, this fraction of plant Si seems to be less subject to extraneous variation than does total Si. Silicon which can be extracted with dilute TCA is a discrete fraction. The amount extracted was little influenced by extraction time, amount of extractant, or number of extractions. The soluble-Si fraction was not stable before extraction. Concentration decreased with time. The rate of decrease was temperature related. Storage in a nitrogen atmosphere decreased Siimmobilization.Total and soluble Si were higher in sugar cane leaf sheaths than leaf blades. Total Si was much higher in leaf sheaths and blades than in the internodal tissue. Soluble Si was highest in the least mature tissues; whereas total Si was highest in the recently mature tissue. Once a cane leaf is mature, there seems to be little change in total Si with time. Evidently Si-deposition in sugar cane is associated with growth.Total Si of leaf blades was more responsive to slag applications than was total Si of leaf sheaths. The reverse was true for soluble Si. The mature stalk tended to be the most responsive tissue in relative terms.Both soluble and total Si reflect differences in soil and irrigation water Si. Total Si in the plant was apparently depressed by stress associated with ripening. When silica deposition was depressed, soluble silicon accumulated in the tissue if there was adequate available Si in the soil.Published with the approval of the Director of the Hawaii Agricultural Experiment Station as HAES Tech. Paper No.893. The work was done in cooperation with the Division of Agricultural Development, Tennessee Valley Authority.  相似文献   

20.
The accumulation of silicon (Si) differs greatly with plant species and cultivars due to different ability of the roots to take up Si. In Si accumulating plants such as rice, barley and maize, Si uptake is mediated by the influx (Lsi1) and efflux (Lsi2) transporters. Here we report isolation and functional analysis of two Si efflux transporters (CmLsi2-1 and CmLsi2-2) from two pumpkin (Cucurbita moschata Duch.) cultivars contrasting in Si uptake. These cultivars are used for rootstocks of bloom and bloomless cucumber, respectively. Different from mutations in the Si influx transporter CmLsi1, there was no difference in the sequence of either CmLsi2 between two cultivars. Both CmLsi2-1 and CmLsi2-2 showed an efflux transport activity for Si and they were expressed in both the roots and shoots. These results confirm our previous finding that mutation in CmLsi1, but not in CmLsi2-1 and CmLsi2-2 are responsible for bloomless phenotype resulting from low Si uptake.Key words: silicon, efflux transporter, pumpkin, cucumber, bloomSilicon (Si) is the second most abundant elements in earth''s crust.1 Therefore, all plants rooting in soils contain Si in their tissues. However Si accumulation in the shoot differs greatly among plant species, ranging for 0.1 to 10% of dry weight.13 In higher plants, only Poaceae, Equisetaceae and Cyperaceae show a high Si accumulation.2,3 Si accumulation also differs with cultivars within a species.4,5 These differences in Si accumulation have been attributed to the ability of the roots to take up Si.6,7Genotypic difference in Si accumulation has been used to produce bloomless cucumber (Cucumis sativus L.).8 Bloom (white and fine powders) on the surface of cucumber fruits is primarily composed of silica (SiO2).9 However, nowadays, cucumber without bloom (bloomless cucumber) is more popular in Japan due to its more attractive and distinctly shiny appearance. Bloomless cucumber is produced by grafting cucumber on some specific pumpkin (Cucurbita moschata Duch.) cultivars. These pumpkin cultivars used for bloomless cucumber rootstocks have lower silicon accumulation compared with the rootstocks used for producing bloom cucumber.9Our study showed that the difference in Si accumulation between bloom and bloomless root stocks of pumpkin cultivars results from different Si uptake by the roots.10 Si uptake has been demonstrated to be mediated by two different types of transporters (Lsi1 and Lsi2) in rice, barley and maize.1115 Lsi1 is an influx transporter of Si, belonging to a NIP subfamily of aquaporin family.10,11,13,14 This transporter is responsible for transport of Si from external solution to the root cells.11 On the other hand, Lsi2 is an efflux transporter of Si, belonging to putative anion transporter.12 Lsi2 releases Si from the root cells towards the xylem. Both Lsi1 and Lsi2 are required for Si uptake by the roots.11,12 To understand the mechanism underlying genotypic difference in Si uptake, we have isolated and functionally characterized an influx Si transporter CmLsi1 from two pumpkin cultivars used for rootstocks of bloomless and bloom cucumber.10 Sequence analysis showed only two amino acids difference of CmLsi1 between two pumpkin cultivars. However, CmLsi1 from bloom rootstock [CmLsi1(B+)] showed transport activity for Si, whereas that from bloomless rootstock [CmLsi1(B)] did not.10 Furthermore, we found that loss of Si transport activity was caused by one amino acid mutation at the position of 242 (from proline to leucine).10 This mutation resulted in failure to be localized at the plasma membrane, which is necessary for functioning as an influx transporter. The mutated protein was localized at the ER.10 Here, we report isolation and expression analysis of Si efflux transporters from two pumpkin cultivars contrasting in Si uptake and accumulation to examine whether Si efflux transporter is also involved in the bloom and bloomless phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号