共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-resolved fluorescence properties of phenol and straight-chained phenol derivatives and tyrosine and simple tyrosine derivatives are reported for the pH range below neutrality. Phenol and straight-chained phenol derivatives exhibit single exponential fluorescence decay kinetics in this pH range unless they have a titratable carboxyl group. If a carboxyl group is present, the data follow a two-state, ground-state, Henderson-Hasselbalch relationship. Tyrosine and its derivatives with a free carboxyl group display complex fluorescence decay behavior as a function of pH. The complex kinetics cannot be fully explained by titration of a carboxyl group; other ground-state processes are evident, especially since tyrosine analogues with a blocked carboxyl group are also multiexponential. The fluorescence kinetics can be explained by a ground-state rotamer model. Comparison of the preexponential weighting factors (amplitudes) of the fluorescence decay constants with the 1H NMR determined phenol side-chain rotamer populations shows that tyrosine derivatives with a blocked or protonated carboxyl group have at least one rotamer exchanging more slowly than the radiative and nonradiative rates, and the fluorescence data are consistent with a slow-exchange model for all three rotamers, the shortest fluorescence decay constant is associated with a rotamer where the carbonyl group can contact the phenol ring, and in the tyrosine zwitterion, either rotamer interconversion is fast and an average lifetime is seen or rotamer interconversion is slow and the individual fluorescence decay constants are similar. 相似文献
2.
J B Ross H R Wyssbrod R A Porter G P Schwartz C A Michaels W R Laws 《Biochemistry》1992,31(6):1585-1594
While the fluorescence decay kinetics of tyrosine model compounds [Laws, W. R., Ross, J. B. A., Wyssbrod, H. R., Beechem, J. M., Brand, L., & Sutherland, J. C. (1986) Biochemistry 25, 599-607] and the tyrosine residue in oxytocin [Ross, J. B. A., Laws, W. R., Buku, A., Sutherland, J. C., & Wyssbrod, H. R. (1986) Biochemistry 25, 607-612] can be explained in terms of heterogeneity derived from the three ground-state chi 1 rotamers, a similar correlation has yet to be directly observed for a tryptophan residue. In addition, the asymmetric indole ring might also lead to heterogeneity from chi 2 rotations. In this paper, the time-resolved and steady-state fluorescence properties of [tryptophan2]oxytocin at pH 3 are presented and compared with 1H NMR results. According to the unrestricted analyses of individual fluorescence decay curves taken as a function of emission wavelength and a global analysis of these decay curves for common emission wavelength-independent decay constants, only three exponential terms are required. In addition, the preexponential weighting factors (amplitudes) have the same relative relationship (weights) as the 1H NMR-determined chi 1 rotamer populations of the indole side chain. 15N was used in heteronuclear coupling experiments to confirm the rotamer assignments. Inclusion of a linked function restricting the decay amplitudes to the chi 1 rotamer populations in the individual decay curve analyses and in the global analysis confirms this correlation. According to qualitative nuclear Overhauser data, there are two chi 2 populations. Depending upon the degree of correlation between chi 2 and chi 1, there may be from three to six side-chain conformations for the tryptophan residue. The combined fluorescence and NMR results are consistent with a rotamer model in which either (i) the chi 2 rotations are fast compared to the fluorescence intensity decay of the tryptophan residue, (ii) environmental factors affecting fluorescence intensity decay properties are dominated by chi 1 interactions, or (iii) the chi 2 and chi 1 rotations are highly correlated. 相似文献
3.
Rousslang KW Reid PJ Holloway DM Haynes DR Dragavon J Ross JB 《Journal of Protein Chemistry》2002,21(8):547-555
We present the time-resolved phosphorescence of oxytocin, two oxytocin derivatives, vasopressin and a series of compounds that serve as models for free tyrosine. One of the oxytocin derivatives, desaminodicarbaoxytocin, has the disulfide bridge replaced by an ethylene bridge, and lacks the N-terminus. Similar to the reported fluorescence decays of tyrosine in these peptides, the phosphorescence decays generally are not single exponentials, but can be fit as biexponentials. The decay times for the oxytocin peptides are shorter than for desaminodicarbaoxytocin or the model compounds, and this we attribute to enhanced spin-orbit coupling due to the presence of sulfur. We measured the phosphorescence decay of the model cyclic pentapeptide that contains tyrosine and compared it to that observed for the same cyclic pentapeptide in which tyrosine is replaced by tryptophan. We also report the phosphorescence of 2-tryptophan-oxytocin, and deamino-2-tryptophan-oxytocin in which biexponential phosphorescence decay is also observed. 相似文献
4.
H. R. M. Leenders J. Vervoort A. van Hoek A. J. W. G. Visser 《European biophysics journal : EBJ》1990,18(1):43-55
The time-resolved fluorescence characteristics of tryptophan in flavodoxin isolated from the sulfate-reducing bacteria Desulfovibrio vulgaris and Desulfovibrio gigas have been examined. By comparing the results of protein preparations of normal and FMN-depleted flavodoxin, radiationless energy transfer from tryptophan to FMN has been demonstrated. Since the crystal structure of the D. vulgaris flavodoxin is known, transfer rate constants from the two excited states 1
L
a
and 1
L
b
can be calculated for both tryptophan residues (Trp 60 and Trp 140). Residue Trp 60, which is very close to the flavin, transfers energy very rapidly to FMN, whereas the rate of energy transfer from the remote Trp 140 to FMN is much smaller. Both tryptophan residues have the indole rings oriented in such a way that transfer will preferentially take place from the 1
L
a
excited state. The fluorescence decay of all protein preparations turned out to be complex, the parameter values being dependent on the emission wavelength. Several decay curves were analyzed globally using a model in which tryptophan is involved in some nanosecond relaxation process. A relaxation time of about 2 ns was found for both D. gigas apo- and holoflavodoxin. The fluorescence anisotropy decay of both Desulfovibrio FMN-depleted flavodoxins is exponential, whereas that of the two holoproteins is clearly non-exponential. The anisotropy decay was analyzed using the same model as that applied for fluorescence decay. The tryptophan residues turned out to be immobilized in the protein. A time constant of a few nanoseconds results from energy transfer from tryptophan to flavin, at least for D. gigas flavodoxin. The single tryptophan residue in D. gigas flavodoxin occupies a position in the polypeptide chain remote from the flavin prosthetic group. Because of the close resemblance of steady-state and time-resolved fluorescence properties of tryptophan in both flavodoxins, the center to center distance between tryptophan and FMN in D. gigas flavodoxin is probably very similar to the distance between Trp 140 and FMN in D. vulgaris flavodoxin (i.e. 20 Å).
Offprint requests to: A.J.W.G. Visser 相似文献
5.
The room temperature chlorophyll fluorescence decay kinetics of photosynthetic mutants of Chlamydomonas reinhardtii have been measured as a function of Photosystem 2 (PS2) trap closure, DNB-induced quenching at FM, and time-resolved emission spectra. The overall decays have been analyzed in terms of three or four kinetic components where necessary. A comparison of the characteristics of the decay components exhibited by the mutants with the wild-type has been carried out to elucidate the precise origins of the different emissions in relation to the observed pigment-protein complexes. It is shown that a) charge recombination in PS2 is not necessary for the presence of long-lived decay components, b) there are two rapid PS1-associated emissions (=30 and 150–200 ps), c) a slow PS1 decay is observed (=1.73 ns) in the absence of PS1 reaction centres, d) the two variable components (=0.25–1.2 and 0.5–2.2 ns) observed in the wild-type arise from LHC2 and e) a rapid (=50–250 ps) decay is associated with the PS2 core antenna (CP3 and CP4). These results show that the intact thylakoid membrane system is too complex to distinguish all of the individual kinetic components.Abbreviations Aexp
preexponential factor (Amplitude)
- chl
chlorophyll
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethyl urea
- DNB
m, dinitrobenzene
- FM
maximum chl fluorescence level
- F0
initial chl fluorescence level
- Fv
variable chl fluorescence (FM–F0)
- LHC
light harvesting chl a/b protein complex
- PS
photosystem
- QA
primary stable electron acceptor of PS2 相似文献
6.
The direct time-resolved fluorescence anisotropy of the single tryptophan residue in the polypeptide hormone adrenocorticotropin-(1-24) (ACTH) and the fluorescence decay kinetics of this residue (Trp-9) are reported. Two rotational correlation times are observed. One, occurring on the subnanosecond time scale, reflects the rotation of the indole ring, and the other, which extends into the nanosecond range, is dominated by the complex motions of the polypeptide chain. The fluorescence lifetimes of the single tryptophan in glucagon (Trp-25) and the 23-26 glucagon peptide were also measured. In all cases the fluorescence kinetics were satisfied by a double-exponential decay law. The fluorescence lifetimes of several tryptophan and indole derivatives and two tryptophan dipeptides were examined in order to interpret the kinetics. In close agreement with the findings of Szabo and Rayner [Szabo, A. G., & Rayner, D. M. (1980) J. Am. Chem. Soc. 102, 554-563], the tryptophan zwitterion exhibits emission wavelength dependent double-exponential decay kinetics. At 320 nm tau 1 = 3.2 ns and tau 2 = 0.8 ns, with alpha 1 = 0.7 and alpha 2 = 0.3. Above 380 nm only the 3.2-ns component is observed. By contrast the neutral derivative N-acetyltryptophanamide has a single exponential decay of 3.0 ns. The multiexponential decay kinetics of the polypeptides are discussed in terms of flexibility of the polypeptide chain and neighboring side-chain interactions. 相似文献
7.
The intrinsic tyrosine fluorescence of histone H1. Steady state and fluorescence decay studies reveal heterogeneous emission 总被引:1,自引:0,他引:1
In wavelength-resolved steady state spectra we observe three different kinds of emission from histone H1, a class A protein with only a single tyrosine residue. Unfolded H1 emissions that peak at approximately 300 and 340 nm can both be excited maximally at approximately 280 nm. Another, peaking much further to the red at approximately 400 nm, can be excited maximally at approximately 320 nm. The 300-nm fluorescence can be resolved by lifetime measurements into three components with decay times of approximately 1, 2, and 4 ns. On sodium-chloride-induced refolding of H1, simplification of the emission properties occurs. The 340 and 400-nm components disappear while the two shorter lifetime components of the 300-nm band diminish in amplitude and are replaced by the 4-ns decay. We believe that the 340-nm emission is tyrosinate fluorescence resulting from excited-state proton transfer. The origin of the 400-nm emission remains uncertain. We assign the 1 and 2-ns components of the 300-nm emission to two states of tyrosine in denatured H1 and the 4-ns decay to fluorescence of the single tyrosine residue in the globular region of refolded H1. Our results support the contention that salt induced folding of H1 is a cooperative two state process, and permit us to better understand the previously reported increases in fluorescence intensity and anisotropy on salt-induced folding. 相似文献
8.
The shifts of the H2 histidine B5 and B10 resonances of 2-Zn insulin hexamer were followed in 2H2O by 1H NMR spectroscopy at 270 MHz from pH 9.85 to 7. The two resonances present at high pH, previously assigned to H2 histidine B5 and B10 residues, moved slightly downfield and split into four resonances at pH 8.95 and also at pH 7. By use of a paramagnetic broadening probe (Mn2+) and the addition of Zn2+ to metal-free insulin, it was deduced that the four resonances arose from histidines B10 and B5 in two different magnetic environments, probably either bound to Zn2+ or not bound to Zn2+. The pK' values of the B5 and B10 histidines were determined in 60% 2H2O-40% dioxan, in which insulin was soluble throughout the pH range, to be 7.1 and 6.8, respectively at 37 degrees C. Studies at higher pH indicated that at a concentration level suitable for 1H NMR (approximately 1 mM) at 37 degrees C in 2H2O the 2-Zn hexamer was largely dissociated to dimer at pH 10.3 and to monomer at pH 10.8. Addition of paramagnetic shift probe Ni2+ to metal-free insulin caused changes to the spectrum similar to those produced on addition of diamagnetic Zn2+. Addition of Co2+ gave a different result, but there was no paramagnetic shift of the H2 histidine B10 resonance, probably because of rapid exchange at the binding site. Addition of Cd2+ and of Cd2+ and Ca2+ produced changes that were similar to each other but were different from those observed on addition of Zn2+, probably due to the binding of Cd2+ and Ca2+ at glutamate B13. 相似文献
9.
1H NMR studies of the solution conformations of an analogue of the C-peptide of ribonuclease A 总被引:5,自引:0,他引:5
J J Osterhout R L Baldwin E J York J M Stewart H J Dyson P E Wright 《Biochemistry》1989,28(17):7059-7064
Two-dimensional NMR experiments have been performed on a peptide, succinyl-AE-TAAAKFLRAHA-NH2, related to the amino-terminal sequence of ribonuclease A. This peptide contains 50-60% helix in 0.1 M NaCl solution, pH 5.2, 3 degrees C, as measured by circular dichroism. NOESY spectra of the peptide in aqueous solution at low temperatures show a number of NOE connectivities that are used to determine the highly populated conformations of the peptide in solution. Short-range dNN(i, i + 1) and d alpha N(i, i + 1) connectivities and medium-range d alpha beta(i, i + 3) and d alpha N(i, i + 3) connectivities are detected. The pattern of NOE connectivities unambiguously establishes the presence of helix in this peptide. The magnitudes of the 3JHN alpha coupling constants and the intensities of the dNN(i, i + 1) and d alpha N(i,i + 1) NOEs allow the evaluation of the position of the helix along the peptide backbone. These data indicate that the amino terminus of the peptide is less helical than the remainder of the peptide. The observation of several long-range NOEs that are atypical of helices indicates the presence of a high population of peptide molecules in which the first three residues are distorted out of the helical conformation. The absence of these NOEs in a related peptide, RN-31, in which Arg 10 has been changed to Ala, suggests that this distortion at the amino-terminal end of the peptide arises from the formation of a salt bridge between Glu 2 and Arg 10.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
11.
12.
(13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin 下载免费PDF全文
Tyrosine ring dynamics of the gastrointestinal hormone motilin was studied using two independent physical methods: fluorescence polarization anisotropy decay and NMR relaxation. Motilin, a 22-residue peptide, was selectively (13)C labeled in the ring epsilon-carbons of the single tyrosine residue. To eliminate effects of differences in peptide concentration, the same motilin sample was used in both experiments. NMR relaxation rates of the tyrosine ring C(epsilon)-H(epsilon) vectors, measured at four magnetic field strengths (9.4, 11.7, 14.1, and 18.8 Tesla) were used to map the spectral density function. When the data were analyzed using dynamic models with the same number of components, the dynamic parameters from NMR and fluorescence are in excellent agreement. However, the estimated rotational correlation times depend on the choice of dynamic model. The correlation times estimated from the two-component model-free approach and the three-component models were significantly different (1.7 ns and 2.2 ns, respectively). Various earlier studies of protein dynamics by NMR and fluorescence were compared. The rotational correlation times estimated by NMR for samples with high protein concentration were on average 18% longer for folded monomeric proteins than the corresponding times estimated by fluorescence polarization anisotropy decay, after correction for differences in viscosity due to temperature and D(2)O/H(2)O ratio. 相似文献
13.
Proton magnetic resonance was used to characterize the dynamics of water in gelatin. Both sol and gel states were investigated.
Transverse relaxation rates (R
2) were dependent on the proton frequency measurement. (R
2) measured with the Carr-Purcell-Meiboom-Gill pulse sequence was dependent on pulse spacing. These observations were interpreted
in terms of chemical exchanges between water protons and those of the macromolecules in the sol state, whereas in the gel
state the contribution of diffusion through microheterogeneities in the sample seems to provide an additional transverse relaxation
mechanism.
Received: 10 May 1999 / Revised version: 13 December 1999 / Accepted: 25 January 2000 相似文献
14.
15.
Henryk Szmacinski Wieslaw Wiczk Mayer N. Fishman Peggy S. Eis Joseph R. Lakowicz Michael L. Johnson 《European biophysics journal : EBJ》1996,24(3):185-193
We have examined the fluorescence intensity decays of oxytocin and [Arg8]-vasopressin resulting from the single tyrosyl residue in each peptide, and the intensity decay of the Asu 1,6-analogues in which the disulfide bridge is substituted by a CH2-CH2 bridge. Viscosity-dependent steady state and intensity decay measurements indicated that fluorescence resonance energy transfer (FRET) from tyrosyl phenol to the disulfide bridge is responsible for the decrease in fluorescence relative to the Asu-analogues. The frequency-domain phase and modulation data for the tyrosyl donor were interpreted in terms of fluorescence resonance energy transfer (FRET) to the weakly absorbing disulfide bridge and a distribution of donor-to-acceptor distances. Energy transfer efficiencies were determined from both time-resolved and steady-state measurements. Fitting the frequency-domain phase and modulation data to a Gaussian distance distribution indicated that the average inter-chromophoric distance (Rav) is similar in both compounds, Rav=7.94 Å for oxytocin and Rav = 8.00 Å for vasopressin. However, the width of the distance distribution is narrower for vasopression (hw =2.80 Å) than for oxytocin (hw =3.58 Å), which is consistent with restriction of the tyrosine phenol motion due to its stacking with the Phe3 side chain of vasopressin. Finally, the recovered distance distribution functions are compared with histograms describing the distance between the chromophores during the course of long, in vacuo, molecular dynamics runs using the computer program CHARMm and the QUANTA 3.0 parameters.Abbreviations AVP
[Arg8]-vasopressin
- FRET
fluorescence resonance energy transfer
- FD
frequency-domain
- D
donor
- A
acceptor
- DTT
dithiothreitol
Correspondence to: J. R. Lakowicz 相似文献
16.
17.
Lacking the extraordinary thermal stability of its metal-bound forms, apo-alpha-parvalbumin from rat muscle assumes two distinct conformations in aqueous solution. At 25 degrees C, its highly structured form predominates (Keq = 5.7; delta G degree = -4.3 kJ X mol-1); as deduced from both 1H NMR and circular dichroism (CD) spectroscopy, this conformation is exceedingly similar to those of its Mg(II)-, Ca(II)-, and Lu(III)-bound forms. The temperature dependences of several well-resolved aromatic and upfield-shifted methyl 1H NMR resonances and several CD bands indicate that the native, highly helical structure of rat apo-alpha-parvalbumin is unfolded by a concerted mechanism, showing no indication of partially structured intermediates. The melting temperature, TM, of rat apo-alpha-parvalbumin is 35 +/- 0.5 degrees C as calculated by both spectroscopic techniques. By 45 degrees C, rat apo-alpha-parvalbumin unfolds entirely, losing the tertiary structure that characterizes its folded form: not only are the ring-current-shifted aromatic and methyl 1H NMR resonances leveled, but the 262- and 269-nm CD bands are also severely reduced. As judged by the decrease in the negative ellipticity of the 222-nm CD band, this less-structured form of rat apo-alpha-parvalbumin shows an approximate 50% loss in apparent alpha-helical content compared to its folded state. Several changes in the 1H NMR spectrum of rat apo-alpha-parvalbumin were exceptionally informative probes of the specific conformational changes that accompany metal ion binding and metal ion exchange. In particular, the line intensities of the ortho proton resonance of Phe-47, the unassigned downfield-shifted alpha-CH resonances from the beta-sheet contacts between the metal-binding loops, the C2H resonance of His-48, and the epsilon-CH3 resonance of an unassigned Met residue were monitored as a function of added metal to determine the stability constants of several metal ion-parvalbumin complexes. We conclude that Mg(II) binds to the CD and EF sites independently, its affinity for the EF site being almost twice that for the CD site. Mg(II)----Ca(II) exchange showed that the CD-site Mg(II) is displaced first, in contrast to Lu(III)'s preferential displacement of the EF-site Ca(II) as determined from the Ca(II)----Lu(III) exchange experiments.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
18.
In mammalian red blood cells the metabolism of methylglyoxal, and some alpha-ketoaldehydes, takes place via two, generally, highly active enzymes, glyoxalase 1 and 2. The 1H NMR spin-echo spectra of horse erythrocytes, and the various reactants in the glyoxalase system, were characterized as a prelude to obtaining series of spectra in time courses of methylglyoxal metabolism. We characterized the kinetics of the enzyme system in red cells from a normal horse and also from one which had very low activity of glyoxylase 2. The kinetics of the reaction scheme, with methylglyoxal as the starting substrate, were obtained from 1H NMR spectra and analyzed with a computer model of the scheme. The most salient feature of the normal system was the very high feed-forward inhibition (KiHTA = 0.1 microM) of glyoxalase 2 by the hemithioacetal which is the substrate of glyoxalase 1. The glyoxalase-2-deficient red cells were used to test whether S-lactoylglutathione is transported from red cells via the glutathione-S-conjugate transporter; this transport appeared not to occur. Because methylglyoxal is extremely rapidly removed (half-life, approximately 5 min) from normal red cells, it is difficult to assess the effect of this compound on glycolysis but the slow decline evident in the deficient cells allowed a study of the effects on L-lactate production; no effects were apparent. 相似文献
19.
1H and 31P NMR pH titrations were conducted to monitor changes in the environment and protonation state of the histidine residues and phosphoserine group of rabbit muscle phosphoglucomutase on binding of metal ions at the activating site and of substrate (glucose phosphate) at the catalytic site. Imidazole C epsilon-H signals from 8 of the 10 histidines present in the free enzyme were observed in 1H NMR spectra obtained by a spin-echo pulse sequence at 470 MHz; their pH (uncorrected pH meter reading of a 2H2O solution measured with a glass electrode standardized with H2O buffer) titration properties (in 99% 2H2O) were determined. Three of these histidine residues, which have pKa values ranging from 6.5 to 7.9, exhibited an atypical pH-dependent perturbation of their chemical shifts with a pHmid of 5.8 and a Hill coefficient of about 2. Since none of the observed histidines has a pKa near 5.8, it appears that these three histidines interact with a cluster consisting of two or more groups which become protonated cooperatively at this pH. Binding of Cd2+ at the activating site of the enzyme abolishes the pH-dependent transition of these histidines; hence, the putative anion cluster may constitute the metal ion binding site, or part of it. Two separate 31P NMR peaks from phosphoserine-116 of the phosphoenzyme were observed between pH 6 and 9. Apparently, the metal-free enzyme exists as a pH-dependent mixture of conformers that provide two different environments, I and II, for the enzymic phosphate group; the transition of the phosphate group between these two environments is slow on the NMR time scale.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Sndor Szab Gyula Szkn Abdulrahim M. Khlafulla Mrta Alms Csaba Kiss Attila Rill Istvn Schn 《Journal of peptide science》2001,7(6):316-322
An improved RP-HPLC method was developed for the determination of the configuration and stereochemical purity of cysteine residues in peptides. The method consists of oxidation of cysteine and cystine residues to cysteic acid, followed by hydrolysis and pre-column chiral derivatization with Val-Marfey's reagent. 相似文献