首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of tyrosine phosphorylation represents a key mechanism governing cell proliferation. In fibroblasts, inputs from both growth factor and extracellular matrix receptors are required for cell division. Triggering such receptors induces a wave of tyrosine phosphorylation on key signaling molecules, culminating in the activation of cyclin-dependent kinases and cell cycle progression. In general, protein tyrosine kinases stimulate, while protein tyrosine phosphatases inhibit, such cell proliferation pathways. The role of protein tyrosine kinases in mitogenesis has been extensively studied, but the identity and targets of the protein tyrosine phosphatases that regulate cell growth are not well described. In this review, I will survey recent advances in the identification and regulation of protein tyrosine phosphatases that downregulate cell proliferation. J. Cell. Physiol. 180:173–181, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

2.
Protein tyrosine kinase activity was assayed in a variety of chicken tissues during embryonic development and in the adult. In some tissues protein tyrosine kinase activity decreased during embryonic development; however, in other tissues it remained high throughout development, it contrast to the level of protein tyrosine phosphorylation, which decreased during development. The highest levels of tyrosine kinase activity were detected in 17-d embryonic brain although only low levels of protein tyrosine phosphorylation were observed in this tissue. Several alternatives were examined in an effort to determine the mechanism responsible for the low levels of tyrosine phosphorylated proteins in most older embryonic and adult chicken tissues despite the presence of highly active tyrosine kinases. The results show that the regulation of protein tyrosine phosphorylation during embryonic development is complex and varies from tissue to tissue. Furthermore, the results suggest that protein tyrosine phosphatases play an important role in regulating the level of phosphotyrosine in proteins of many older embryonic and adult tissues.  相似文献   

3.
Tyrosine protein kinases have been shown to be functionally involved in regulation of cellular signalling, proliferation and transformation. The activity of tyrosine protein kinases is counterbalanced by phospho tyrosine phosphatases that maintain constitutively low levels of protein phosphotyrosine in most cells. In this study the effect of N-ethylmaleimide on the protein tyrosine phosphorylation was tested in Jurkat T-cells. Treatment of intact cells for 5-10 mins with 50-100 microM N-ethylmaleimide resulted in a dramatic increase in phosphorylation on tyrosine residues. Phosphoaminoacid analysis revealed an up to ten-fold increase in the content of phosphotyrosine. N-ethylmaleimide blocked the phospho tyrosine phosphatases activity of immunoprecipitated CD45 while in a kinase assay N-ethylmaleimide did not affect the 32P-gamma-ATP phosphorylation of substrates. The N-ethylmaleimide-induced hyperphosphorylation was reversed by treatment with 2 mM dithiotreitol. It is concluded that N-ethylmaleimide offers a novel useful tool for identification of substrates for tyrosine protein kinases and for studies on phosphotyrosine-dependent protein interactions.  相似文献   

4.
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for the latter process, tyrosine phosphorylation, has increased substantially since this topic was last reviewed. In this review, we present a comprehensive summary and synthesis of the literature regarding the mechanism and function of ion channel regulation by protein tyrosine kinases and phosphatases. Coverage includes the majority of voltage-gated, ligand-gated, and second messenger-gated channels as well as several types of channels that have not yet been cloned, including store-operated Ca2+ channels, nonselective cation channels, and epithelial Na+ and Cl- channels. Additionally, we discuss the critical roles that channel-associated scaffolding proteins may play in localizing protein tyrosine kinases and phosphatases to the vicinity of ion channels.  相似文献   

5.
Protein phosphorylation is a reversible post-translational modification controlling many biological processes. Most phosphorylation occurs on serine and threonine, and to a less extend on tyrosine (Tyr). In animals, Tyr phosphorylation is crucial for the regulation of many responses such as growth or differentiation. Only recently with the development of mass spectrometry, it has been reported that Tyr phosphorylation is as important in plants as in animals. The genes encoding protein Tyr kinases and protein Tyr phosphatases have been identified in the Arabidopsis thaliana genome. Putative substrates of these enzymes, and thus Tyr-phosphorylated proteins have been reported by proteomic studies based on accurate mass spectrometry analysis of the phosphopeptides and phosphoproteins. Biochemical approaches, pharmacology and genetic manipulations have indicated that responses to stress and developmental processes involve changes in protein Tyr phosphorylation. The aim of this review is to present an update on Tyr phosphorylation in plants in order to better assess the role of this post-translational modification in plant physiology.Key words: protein tyrosine phosphorylation, kinases, phosphatases, proteomics, mass spectrometry, signaling  相似文献   

6.
In eukaryotic organisms, reversible tyrosine phosphorylation has been established as an important element in the regulation of cell growth and more recently as an essential element in the regulation of the cell division cycle. The activity of p34cdc2, a protein kinase whose activity is required for the entry of cells into mitosis, is tightly controlled by reversible phosphorylation at tyrosine 15. A complex network of interacting protein kinases and protein phosphatases regulate the state of p34cdc2 tyrosine phosphorylation and therefore the entry of cells into mitosis. In the fission yeast Schizosaccharomyces pombe, genes encoding several of these protein kinases and protein phosphatases have been obtained through genetic approaches. In this review, we will focus on the protein kinases encoded by wee1+, mik1+ and cdr1+/nim1+ and the protein phosphatases encoded by cdc25+ and pyp1+, pyp2+ and pyp3+. Homologs of many of these regulators have been identified and characterized in higher eukaryotes underscoring the importance of reversible tyrosine phosphorylation as a universal mechanism for the regulation of the cell division cycle.  相似文献   

7.
The regulation of tyrosine phosphorylation is recognized as an important developmental mechanism. Both addition and removal of phosphate moieties on tyrosine residues are tightly regulated during development. Originally, most attention focused on the role of tyrosine kinases during development, but more recently, the developmental importance of tyrosine phosphatases has been gaining interest. Receptor protein tyrosine phosphatases (RPTPs) are of particular interest to developmental biologists because the extracellular domains of RPTPs are similar to those of cell adhesion molecules (CAMs). This suggests that RPTPs may have functions in development similar to CAMs. This review focuses on the role of RPTPs in development of the nervous system in processes such as axon guidance, synapse formation, and neural tissue morphogenesis.  相似文献   

8.
Protein-tyrosine phosphatases are key regulators of protein tyrosine phosphorylation. More than merely terminating the pathways initiated by protein-tyrosine kinases, phosphatases are active participants in many signaling pathways. Signals involving tyrosine phosphorylation are frequently generated in response to cell-matrix adhesion. In addition, high levels of protein tyrosine phosphorylation generally promote disassembly or turnover of adhesions. In this brief review, we will discuss the role of protein-tyrosine phosphatases in cell-matrix adhesions.  相似文献   

9.
蛋白质分子中酪氨酸残基可逆性的磷酸化是细胞内信号分子传导的基本方式。两类作用相反的酶参与磷酸化的调节:蛋白酪氨酸激酶(protein tyrosinekinase,PTK)和蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)。含脯氨酸-谷氨酸-丝氨酸-苏氨酸(P-E-S-T)结构域的蛋白酪氨酸磷酸酶(PTP-PEST)属于非受体型酪氨酸磷酸酶类,其本身能与多种蛋白质相互作用,并在细胞迁移、免疫细胞活化和胚胎发育等生理过程中发挥重要作用。本文对PTP-PEST的结构特点、生理功效、介导的信号传导途径和近年来PTP-PEST在疾病中的作用作一综述。  相似文献   

10.
Zheng Wu  Ming Lu  Tingting Li 《Amino acids》2014,46(8):1919-1928
Tyrosine phosphorylation plays crucial roles in numerous physiological processes. The level of phosphorylation state depends on the combined action of protein tyrosine kinases and protein tyrosine phosphatases. Detection of possible phosphorylation and dephosphorylation sites can provide useful information to the functional studies of relevant proteins. Several studies have focused on the identification of protein tyrosine kinase substrates. However, compared with protein tyrosine kinases, the prediction of protein tyrosine phosphatase substrates involved in the balance of protein phosphorylation level falls behind. This paper described a method that utilized the k-nearest neighbor algorithm to identity the substrate sites of three protein tyrosine phosphatases based on the sequence features of manually collected dephosphorylation sites. In the performance evaluation, both sensitivities and specificities could reach above 75 % for all three protein tyrosine phosphatases. Finally, the method was applied on a set of known tyrosine phosphorylation sites to search for candidate substrates.  相似文献   

11.
12.
The role of tyrosine phosphorylation in cell transformation has been well established. It has been proposed that protein tyrosine phosphatases (PTPases) may be capable of dephosphorylating critical substrates involved in the transformation process, suggesting that they represent a tumor suppressor family of enzymes. Indeed, recent work showed that overexpression of some PTPases in malignant cells counteracted the action of oncogenic tyrosine kinases although overexpression of other forms of these enzymes increased tumorigenicity. The work described herein has provided some insight into the action, both antagonistic and synergistic, of the kinases and phosphatases on cell growth and transformation.  相似文献   

13.
Miller DT  Read R  Rusconi J  Cagan RL 《Gene》2000,243(1-2):1-9
The fine modulation of tyrosine phosphorylation by protein tyrosine phosphatases and protein tyrosine kinases is a key regulatory mechanism for many cell signaling pathways active during development. In a screen for genes with interesting expression patterns in the developing Drosophila pupal retina, we identified a novel pair of protein tyrosine phosphatases that exhibit an expression pattern suggesting a role in multiple steps of Drosophila neurogenesis. Together, these phosphatases define the primo locus. Their sequence is approx. 50% identical to each other and to low-molecular-weight protein tyrosine phosphatases (LMW-PTPs) identified in other species. Little is understood of the biological role of LMW-PTPs, and the powerful tools available in Drosophila should provide important insight into their role in signaling and development.  相似文献   

14.
Tau is a neuronal microtubule-associated protein. Its hyperphosphorylation plays a critical role in Alzheimer disease (AD). Expression and phosphorylation of tau are regulated developmentally, but its dynamic regulation and the responsible kinases or phosphatases remain elusive. Here, we studied the developmental regulation of tau in rats during development from embryonic day 15 through the age of 24 months. We found that tau expression increased sharply during the embryonic stage and then became relatively stable, whereas tau phosphorylation was much higher in developing brain than in mature brain. However, the extent of tau phosphorylation at seven of the 14 sites studied was much less in developing brain than in AD brain. Tau phosphorylation during development matched the period of active neurite outgrowth in general. Tau phosphorylation at various sites had different topographic distributions. Several tau kinases appeared to regulate tau phosphorylation collectively at overlapping sites, and the decrease of overall tau phosphorylation in adult brain might be due to the higher levels of tau phosphatases in mature brain. These studies provide new insight into the developmental regulation of site-specific tau phosphorylation and identify the likely sites required for the abnormal hyperphosphorylation of tau in AD.  相似文献   

15.
Tyrosine phosphorylation plays a central role in eukaryotic signal transduction. In yeast, MAP kinase pathways are regulated by tyrosine phosphorylation, and it has been speculated that other biochemical processes may also be regulated by tyrosine phosphorylation. Previous genetic and biochemical studies demonstrate that protein tyrosine phosphatases (PTPases) negatively regulate yeast MAP kinases. Here we report that deletion of PTP2 and PTP3 results in a sporulation defect, suggesting that tyrosine phosphorylation is involved in regulation of meiosis and sporulation. Deletion of PTP2 and PTP3 blocks cells at an early stage of sporulation before premeiotic DNA synthesis and induction of meiotic-specific genes. We observed that tyrosine phosphorylation of several proteins, including 52-, 43-, and 42-kDa proteins, was changed in ptp2Deltaptp3Delta homozygous deletion cells under sporulation conditions. The 42-kDa tyrosine-phosphorylated protein was identified as Mck1, which is a member of the GSK3 family of protein kinases and previously known to be phosphorylated on tyrosine. Mutation of MCK1 decreases sporulation efficiency, whereas mutation of RIM11, another GSK3 member, specifically abolishes sporulation; therefore, we investigated regulation of Rim11 by Tyr phosphorylation during sporulation. We demonstrated that Rim11 is phosphorylated on Tyr-199, and the Tyr phosphorylation is essential for its in vivo function, although Rim11 appears not to be directly regulated by Ptp2 and Ptp3. Biochemical characterizations indicate that tyrosine phosphorylation of Rim11 is essential for the activity of Rim11 to phosphorylate substrates. Our data demonstrate important roles of protein tyrosine phosphorylation in meiosis and sporulation  相似文献   

16.
The polyamine spermine is transported into the matrix of various types of mitochondria by a specific uniporter system identified as a protein channel. This mechanism is regulated by the membrane potential; other regulatory effectors are unknown. This study analyzes the transport of spermine in the presence of peroxides in both isolated rat liver and brain mitochondria, in order to evaluate the involvement of the redox state in this mechanism, and to compare its effect in both types of mitochondria. In liver mitochondria peroxides are able to inhibit spermine transport. This effect is indicative of redox regulation by the transporter, probably due to the presence of critical thiol groups along the transport pathway, or in close association with it, with different accessibility for the peroxides and performing different functions. In brain mitochondria, peroxides have several effects, supporting the hypothesis of a different regulation of spermine transport. The fact that peroxovanadate can inhibit tyrosine phosphatases in brain mitochondria suggests that mitochondrial spermine transport is regulated by tyrosine phosphorylation in this organ. In this regard, the evaluation of spermine transport in the presence of Src inhibitors suggests the involvement of Src family kinases in this process. It is possible that phosphorylation sites for Src kinases are present in the channel pathway and have an inhibitory effect on spermine transport under regulation by Src kinases. The results of this study suggest that the activity of the spermine transporter probably depends on the redox and/or tyrosine phosphorylation state of mitochondria, and that its regulation may be different in distinct organs.  相似文献   

17.
Tyrosine phosphorylation regulates multiple cell signaling pathways and functionally modulates a number of ion channels and receptors. Neurotransmitter transporters, which act to clear transmitter from the synaptic cleft, are regulated by multiple second messenger pathways that exert their effects, at least in part, by causing a redistribution of the transporter protein to or from the cell surface. To test the hypothesis that tyrosine phosphorylation affects transporter function and to determine its mechanism of action, we examined the regulation of the rat brain gamma-aminobutyric acid (GABA) transporter GAT1 expressed endogenously in hippocampal neurons and expressed heterologously in Chinese hamster ovary cells. Inhibitors of tyrosine kinases decreased GABA uptake; inhibitors of tyrosine phosphatases increased GABA uptake. The decrease in uptake seen with tyrosine kinase inhibitors was correlated with a decrease in tyrosine phosphorylation of GAT1 and resulted in a redistribution of the transporter from the cell surface to intracellular locations. A mutant GAT1 construct that was refractory to tyrosine phosphorylation could not be regulated by tyrosine kinase inhibitors. Activators of protein kinase C, which are known to cause a redistribution of GAT1 from the cell surface, were additive to the effects of tyrosine kinase inhibitors suggesting that multiple signaling pathways control transporter redistribution. Application of brain-derived neurotrophic factor, which activates receptor tyrosine kinases, up-regulated GAT1 function suggesting one potential trigger for the cellular regulation of GAT1 signaling by tyrosine phosphorylation. These data support the hypothesis that transporter expression and function is controlled by the interplay of multiple cell signaling cascades.  相似文献   

18.
19.
Treatment of adipocytes with okadaic acid (a specific inhibitor of type 1 and 2a protein phosphatases) resulted in a rapid 8-10-fold stimulation of cell extract myelin basic protein (MBP) kinase activity (t1/2 = 10 min) and kinase activity toward a synthetic peptide RRLSSLRA (S6 peptide) (t1/2 = 5 min). Insulin brought about a smaller stimulation of these two activities (t1/2 = 2.5 min). MBP kinase activity from cells treated with okadaic acid or insulin was resolved by anion exchange chromatography into two well defined peaks; S6 peptide kinase activity was less well resolved. The two partially purified MBP kinases were inactivated by the protein tyrosine phosphatase CD45 or by protein phosphatase 2a (PP-2a). In contrast, partially purified S6 peptide kinase activity was inactivated only by PP-2a or protein phosphatase 1 (PP-1). Furthermore, a 38-kDa protein which co-eluted with one peak of MBP kinase and a 42-kDa protein which co-eluted with the other peak of MBP kinase were phosphorylated on tyrosine after treatment with okadaic acid. These findings illustrate several important points concerning regulation of MBP and S6 peptide kinases. First, these protein kinases are regulated by phosphorylation, and, second, in the absence of hormonal stimuli their activities are strongly suppressed by protein phosphatases. Lastly, the increased tyrosine phosphorylation accompanying the activation of MBP kinases following okadaic acid treatment suggests a role for PP-2a in events that are mediated by tyrosine phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号