首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powdery mildew (PMD) of soybean [Glycine max (L.) Merr.] is caused by the fungus Microsphaera diffusa. Severe infection of PMD on susceptible varieties often causes premature defoliation and chlorosis of the leaves, which can result in considerable yield losses under favorable environmental conditions for disease development in the field. A total of 334 F(7)-derived recombinant inbred lines (RILs) from a cross of a PMD susceptible soybean cultivar Wyandot and PMD-resistant PI 567301B were used for genetic mapping of PMD resistance in PI 567301B and for development of molecular markers tightly linked to the gene. The result of the PMD screening for each line in the field was in agreement with that in the greenhouse test. The genetic map containing the PMD resistance gene was constructed in a 3.3?cM interval flanked by two simple sequence repeat (SSR) markers on chromosome 16. The PMD resistance gene was mapped at the same location with SSR marker BARCSOYSSR_16_1291, indicating that there was no recombination between the 334 RILs and this marker. In addition, a single nucleotide polymorphism (SNP) marker developed by high-resolution melting curve analysis and a cleaved amplified polymorphic sequence (CAPS) marker with Rsa1 recognition site were used for the genetic mapping. These two markers were also mapped to the same genomic location with the PMD resistance gene. We validated three tightly linked markers to the PMD resistance gene using 38 BC(6)F(2) lines and corresponding BC(6)F(2:3) families. The three marker genotypes of the backcross lines predicted the observed PMD phenotypes of the lines with complete accuracy. We have mapped a putatively novel single dominant PMD resistance gene in PI 567301B and developed three new molecular markers closely linked to the gene. Molecular markers developed from this study may be used for high-throughput marker-assisted breeding for PMD resistance with the gene from PI 567301B.  相似文献   

2.
Partial resistance to downy mildew (Plasmopara halstedii) and to black stem (Phoma macdonaldii) in sunflower were investigated under natural field infection and a controlled growth chamber respectively. Genetic control for resistance to the diseases was determined in recombinant inbred lines (RILs) and their two parents, ’PAC-2’ and ’RHA-266.’ The experiments were undertaken in a randomized complete block design with two replications, in a field severely infected by downy mildew and in a controlled growth chamber with plants inoculated with an agressive French isolate of P. macdonaldii. Each replication consisted of three rows, 4.6-m long, giving 48 plants per RIL or parent in the field and 15 plants in the growth chamber. Genetic variability was observed among the RILs for resistance to both diseases. When 10% of the selected RILs were compared with the mean of the two parents genetic gain was significant for partial resistance to the diseases. Four putative QTLs for resistance to downy mildew on linkage groups 1, 9 and 17 were detected using composite interval mapping. The QTLs explained 54.9% of the total phenotypic variance. Major QTLs (dmr1–1 and dmr1–2) for resistance were found on linkage group 1 with up to 31% of the phenotypic variability explained by two peaks. QTL analysis of resistance to black stem showed seven QTLs on linkage groups 3, 6, 8, 9, 11, 15 and 17. The detected QTLs together explain 92% of the phenotypic variation of the trait. Crosses between RILs contrasted for their resistance to downy mildew and black stem, and exhibiting molecular polymorphism in detected QTLs, will be made in order to focus more-precisely on the genomic region of interest. Received: 28 February 2001 / Accepted: 14 June 2001  相似文献   

3.
Laodelphax striatellus Fallén (Homoptera: Delphacidae), is a serious pest in rice, Oryza sativa L., production. A mapping population consisting of 81 recombinant inbred lines (RILs), derived from a cross between japonica' Kinmaze' and indica' DV85' rice, was used to detect quantitative trait loci (QTLs) for the resistance to L. striatellus. Seedbox screening test (SST), antixenosis test, and antibiosis test were used to evaluate the resistance response of the two parents and 81 RILs to L. striatellus at the seedling stage, and composite interval mapping was used for QTL analysis. When the resistance was measured by SST method, two QTLs conferring resistance to L. striatellus were mapped on chromosome 11, namely, Qsbph11a and Qsbph11b, with log of odds scores 2.51 and 4.38, respectively. The two QTLs explained 16.62 and 27.78% of the phenotypic variance in this population, respectively. In total, three QTLs controlling antixenosis against L. striatellus were detected on chromosomes 3, 4, and 11, respectively, accounting for 37.5% of the total phenotypic variance. Two QTLs expressing antibiosis to L. striatellus were mapped on chromosomes 3 and 11, respectively, explaining 25.9% of the total phenotypic variance. The identified QTL located between markers XNpb202 and C1172 on chromosome 11 was detected repeatedly by three different screening methods; therefore, it may be important to confer the resistance to L. striatellus. Once confirmed in other mapping populations, these QTLs should be useful in breeding for resistance to L. striatellus by marker-assisted selection of different resistance genes in rice varieties.  相似文献   

4.
A major gene for the number of days from sowing to appearance of the first flower (time of flowering) was identified in a cross between an extrashort duration chickpea (Cicer arietinum L.) variety, ICCV 2, and a medium duration variety, JG 62. The F2 population was advanced through the single-seed-descent method to develop random recombinant inbred lines (RILs). Time of flowering was recorded for the parents and 66 F(6) RILs from this cross that were grown in a Vertisol field in the post-rainy season of 1996-1997. Similarly the parents, F(1) and F(10) RILs were evaluated in 1997-1998. The F(1) flowered along with JG 62. The time of flowering for the two sets of RILs showed bimodal distributions with nearly equal peaks. One peak corresponded with ICCV 2 and the other with JG 62. This suggests that a single gene controls the difference for the time of flowering between ICCV 2 and JG 62 and the allele carried by the latter parent is dominant. To our knowledge no gene has been identified for the time of flowering in chickpea. Therefore the allele carried by JG 62 is designated as Efl-1 and that by ICCV 2 as efl-1. The proposed genotype for ICCV 2 is efl-1 efl-1 and for JG 62 is Efl-1 Efl-1. The genotype efl-1 efl-1 reduces the time of flowering at ICRISAT by nearly 3 weeks. The significance of this gene for breeding for early maturity and genome mapping has been discussed.  相似文献   

5.
Linkage analysis, Kruskal–Wallis analysis, interval mapping and graphical genotyping were performed on a potato diploid backcross family comprising 120 clones segregating for resistance to late blight. A hybrid between the Solanum tuberosum dihaploid clone PDH247 and the long-day-adapted S. phureja clone DB226(70) had been crossed to DB226(70) to produce the backcross family. Eighteen AFLP primer combinations provided 186 and 123 informative maternal and paternal markers respectively, with 63 markers in common to both parents. Eleven microsatellite (SSR) markers proved useful for identifying chromosomes. Linkage maps of both backcross parents were constructed. The results of a Kruskal–Wallis analysis, interval mapping and graphical genotyping were all consistent with a QTL or QTLs for blight resistance between two AFLP markers 30 cM apart on chromosome 4, which was identified by a microsatellite marker. The simplest explanation of the results is a single QTL with an allele from the dihaploid parent conferring resistance to race 1, 4 of P. infestans in the foliage in the glasshouse and to race 1, 2, 3, 4, 6, 7 in the foliage in the field and in tubers from glasshouse raised plants. The QTL was of large effect, and explained 78 and 51% of the variation in phenotypic scores for foliage blight in the glasshouse and field respectively, as well as 27% of the variation in tuber blight. Graphical genotyping and the differences in blight scores between the parental clones showed that all of the foliage blight resistance is accounted for by chromosome 4, whereas undetected QTLs for tuber resistance probably exist on other chromosomes. Graphical genotyping also explained the lack of precision in mapping the QTL(s) in terms of lack of appropriate recombinant chromosomes.  相似文献   

6.
The reaction of wheat genotypes to Septoria tritici   总被引:1,自引:0,他引:1  
Seedling leaves, flag leaves, culms and heads of wheat genotypes were evaluated under glasshouse and field conditions for reaction to Septoria tritici. Parameters used for resistance screening were the incubation and latent periods, disease and sporulation levels, and 1000 grain weight. Significant correlations were obtained between reactions of different plant organs and between field and glasshouse tests; significant interspecific and intraspecific differences occurred for all screening parameters. Triticum aestivum varieties showed a wide range of disease reaction ranging from the high resistance of Elite Lepeuple, Maris Dove, Maris Ensign, Chalk and Tommy to the high susceptibility of Rothwell Sprite, Sovereign, Cardinal, Maris Ranger and Maris Templar.  相似文献   

7.
Beet armyworm, Spodoptera exigua (Hübner), is an economic pest of chickpea, Cicer arietinum L., in Mexico and the Indian subcontinent. Larvae feed on the vegetative and reproductive stages of chickpea and the development of plant resistance is a priority in the management of this pest. Forty‐two recombinant inbred lines (RILs) from a chickpea recombinant inbred line population (CRIL‐7) developed from a cross between FLIP 84‐92C (susceptible C. arietinum) and PI 599072 (resistant C. reticulatum Lad. accession) were rated resistant (nine lines with post‐trial larval weights 0.42–0.59 mg), moderately resistant/susceptible (25 lines, larval weights 0.61–0.99 mg) and susceptible (eight lines, larval weights 1.01–2.17 mg) to beet armyworm larvae in a general glasshouse screening. Resistance and susceptibility of entries (RILs in the CRIL‐7 population, parents, checks) was based on the average weight gain and fate of early‐stage larvae on pre‐flowering plants. In a growth chamber trial, early‐instar larval weight gain differed significantly (P < 0.0001) among entries (12 RILs, parents, checks), with mean weights from 0.80 mg (resistant RIL) to 4.03 mg (susceptible kabuli cultivar). There were no significant differences (P = 0.0836) in larval mortality among the entries in the growth chamber trial, although mortality rates were 28.2–61.9%. Flavonoid and isoflavonoid extractions and analyses did not clarify the role played by these phytochemicals in chickpea resistance to S. exigua. The requisite high levels of resistance to S. exigua and other pests for breeding resistant culivars may reside in the CRIL‐7 population.  相似文献   

8.
A set of 104 wheat recombinant inbred lines (RILs) obtained from a cross between parents resistant (HD 29) and susceptible (WH 542) to karnal bunt (KB) (caused by Neovossia indica) were screened and used to identify random amplified polymorphic DNA (RAPD) markers linked with resistance to karnal bunt as these would allow indirect marker assisted selection of KB resistant genotypes. The two parents were analysed with 92 RAPD primers. A total of 65 primers proved functional by giving scorable polymerase chain reaction (PCR) products. Of these, 21 (32 %) primers detected polymorphism between the two parental genotypes. Using these primers, bulked segregant analysis was carried out on two bulk DNAs, one obtained by pooling DNA from 10 KB resistant RILs and the other similarly derived by pooling 10 KB susceptible RILs. One marker, OPM-20 showed apparent association with resistance to KB. This was confirmed following selective genotyping of individual RILs included in the bulks.  相似文献   

9.
Genetic analysis of durable resistance against leaf rust in durum wheat   总被引:1,自引:0,他引:1  
The Italian durum wheat cultivar Creso possesses a high level of durable resistance to leaf rust based on both hypersensitive and non-hypersensitive components. In order to investigate the genetic basis of this resistance, a segregating population composed of 123 recombinant inbred lines (RILs) derived from the cross Creso × Pedroso, was evaluated for disease severity in adult plants under field conditions. Furthermore, the resistance of parents and RILs was evaluated by assessing macroscopically the latency period and microscopically the number and type of pathogen colonies formed following artificial inoculation with a specific isolate. This experiment was performed at controlled conditions at two developmental stages. Besides some minor QTLs, one major QTL explaining both reduction of disease severity in the field and increased latency period was found on the long arm of chromosome 7B, and closely associated PCR-based and DArT markers were identified. Daniela Marone and Ana I. Del Olmo contributed equally to the work.  相似文献   

10.
QTL (quantitative trait loci) mapping is commonly used to identify genetic regions responsible to important phenotype variation. A common strategy of QTL mapping is to use recombinant inbred lines (RILs), which are usually established by several generations of inbreeding of an F1 population (usually up to F6 or F7 populations). As this inbreeding process involves a large amount of labor, we are particularly interested in the effect of the number of inbreeding generations on the power of QTL mapping; a part of the labor could be saved if a smaller number of inbreeding provides sufficient power. By using simulations, we investigated the performance of QTL mapping with recombinant inbred lines (RILs). As expected, we found that the power of F4 population could be almost comparable to that of F6 and F7 populations. A potential problem in using F4 population is that a large proportion of RILs are heterozygotes. We here introduced a new method to partly relax this problem. The performance of this method was verified by simulations with a wide range of parameters including the size of the segregation population, recombination rate, genome size and the density of markers. We found our method works better than the commonly used standard method especially when there are a number of heterozygous markers. Our results imply that in most cases, QTL mapping does not necessarily require RILs at F6 or F7 generations; rather, F4 (or even F3) populations would be almost as useful as F6 or F7 populations. Because the cost to establish a number of RILs for many generations is enormous, this finding will cause a reduction in the cost of QTL mapping, thereby accelerating gene mapping in many species.  相似文献   

11.
Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is key to facilitate the introgression of different FHB resistance genes into adapted wheat. The objective of this project was to study the FHB resistance QTL on chromosome 6B, quantify the phenotypic variation, and qualitatively map the resistance gene as a Mendelian factor. The FHB resistant parent BW278 (AC Domain*2/Sumai 3) was used as the source of the resistance allele. A large recombinant inbred line (RIL) mapping population was developed from the cross BW278/AC Foremost. The population segregated for three known FHB resistance QTL located on chromosomes 3BSc, 5A, and 6B. Molecular markers on chromosome 6B (WMC104, WMC397, GWM219), 5A (GWM154, GWM304, WMC415), and 3BS (WMC78, GWM566, WMC527) were amplified on approximately 1,440 F2:7 RILs. The marker information was used to select 89 RILs that were fixed homozygous susceptible for the 3BSc and 5A FHB QTLs and were recombinant in the 6B interval. Disease response was evaluated on 89 RILs and parental checks in the greenhouse and field nurseries. Dual floret injection (DFI) was used in greenhouse trials to evaluate disease severity (DS). Macroconidial spray inoculations were used in field nurseries conducted at two locations in southern Manitoba (Carman and Glenlea) over two years 2003 and 2004, to evaluate disease incidence, disease severity, visual rating index, and Fusarium-damaged kernels. The phenotypic distribution for all five-disease infection measurements was bimodal, with lines resembling either the resistant or susceptible checks and parents. All of the four field traits for FHB resistance mapped qualitatively to a coincident position on chromosome 6BS, flanked by GWM133 and GWM644, and is named Fhb2. The greenhouse-DS trait mapped 2 cM distal to Fhb2. Qualitative mapping of Fhb2 in wheat provides tightly linked markers that can reduce linkage drag associated with marker assisted selection of Fhb2 and aid the pyramiding of different resistance loci for wheat improvement.  相似文献   

12.
A framework linkage map was developed using 284 F10 recombinant inbred lines (RILs) from a ’Lemont’×’Teqing’ rice cultivar cross. Evaluation of a subset of 245 of these RILs with five races of the rice blast pathogen permitted RFLP mapping of three major resistance genes from Teqing and one major gene from Lemont. All mapped genes were found to confer resistance to at least two blast races, but none conferred resistance to all five races evaluated. RFLP mapping showed that the three resistance genes from Teqing, designated Pi-tq5, Pi-tq1 and Pi-tq6, were present on chromosomes 2, 6 and 12, respectively. The resistance gene from Lemont, Pi-lm2, was located on chromosome 11. Pi-tq1 is considered a new gene, based on its reaction to these five races and its unique map location, while the other three genes may be allelic with previously reported genes. Lines with different gene combinations were evaluated for disease reaction in field plots. Some gene combinations showed both direct effects and non-linear interaction. The fact that some of the lines without any of the four tagged genes exhibited useful levels of resistance in the field plots suggests the presence of additional genes or QTLs affecting the blast reaction segregating in this population. Received: 16 December 1999 / Accepted: 28 February 2000  相似文献   

13.
Resistance to leaf blight in sorghum [Sorghum bicolor (L.) Moench] accession G-118 was found to segregate as a single dominant trait in a cross to susceptible cultivar, HC-136. Molecular marker(s) linked to the locus for disease resistance was identified using simple sequence repeat (SSR) markers coupled with bulk segregant analysis. Genomic DNA from the parental cultivars and bulks were screened by PCR amplification with 50 simple sequence repeat primer pairs. Out of these, 38 SSR primers produced polymorphism between parents. After screening of these 38 SSRs with resistant and susceptible bulk, one SSR primer, Xtxp 309 produced a unique band of approximately 700 bp only in resistant parent and resistant bulk and a unique band of 450 bp only in susceptible parent and susceptible bulk. Upon screening with individual resistant and susceptible recombinant inbred lines (RILs), marker Xtxp 309 produced amplification in 23 of the 26 resistant RILs and no amplification was produced in any of the 25 susceptible RILs. The same marker Xtxp 309 produced amplification in 21 of the susceptible RILs and 3 of the resistant RILs of 450 bp band. This was found to be located at a distance of 3.12 cM away from the locus governing resistance to leaf blight which was considered to be closely linked and 7.95 cM away from the locus governing susceptibility to leaf blight. This marker may prove useful in MAS for gene introgression, plant genetic diagnostics and gene pyramiding for resistance via genetic transformation for disease resistance in plants.  相似文献   

14.
Brown planthopper (Nilaparvata lugens St?l) is one of the major insect pests of rice. A Sri Lankan indica rice cultivar Rathu Heenati was found to be resistant to all biotypes of the brown planthopper. In the present study, a total of 268 F7 RILs of IR50 and Rathu Heenati were phenotyped for their level of resistance against BPH by the standard seedbox screening test (SSST) in the greenhouse. A total of 53 SSR primers mapped on the chromosome 3 were used to screen the polymorphism between the parents IR50 and Rathu Heenati, out of which eleven were found to be polymorphic between IR50 and Rathu Heenati. The eleven primers that have shown polymorphism between the IR50 and Rathu Heenati parents were genotyped in a set of five resistant RILs and five susceptible RILs along with the parents for co-segregation analysis. Among the eleven primers, two primers namely RM3180 (18.22 Mb) and RM2453 (20.19 Mb) showed complete co-segregation with resistance. The identification of SSR markers linked with BPH resistant could be used for the maker assisted selection (MAS) program in rice breeding and to map the resistant genes on rice chromosomes for further gene cloning.  相似文献   

15.
A total of 28 inbred lines of Brussels sprout were assessed in the glasshouse for their reaction to inoculation with cauliflower mosaic (CaMV) or turnip mosaic (TuMV) virus. There was significant variation for resistance to both viruses. From the 28 inbred lines parents were chosen for two 9 × 9 diallel crossing programmes. The parents and their F1 progeny were assessed for their reaction to CaMV or TuMV in the field. There was significant additive and non-additive (dominance) variation but no maternal effects. Resistance to both viruses was generally dominant but with some evidence of a recessive gene for resistance to CaMV. Resistance to TuMV and CaMV was apparently controlled by at least four genes and two genes respectively. The heritability of resistance to each virus was high. The implications for breeding F1 hybrid Brussels sprout cultivars are discussed.  相似文献   

16.
A mapping population of F(8)derived recombinant inbred lines (RILs) was established from a cross between a domesticated breeding line 83A:476 and a wild type P27255 in narrow-leaf lupin (Lupinus angustifolius L.). The parents together with the 89 RILs were subjected to DNA fingerprinting using microsatellite-anchored fragment length polymorphism (MFLP) to rapidly generate DNA markers to construct a linkage map. Five hundred and twenty two unique markers of which 21% were co-dominant, were generated and mapped. Phenotypic data for the domestication traits: mollis (soft seeds), leucospermus (white flower and seed colour); Lentus (reduced pod-shattering), iucundis (low alkaloid), Ku (early flowering) and moustache pattern on seed coats; were included. Three to 7 molecular markers were identified within 5 cM of each of these domestication genes. The anthracnose resistance gene Lanr1 was also mapped. Linkage groups were constructed using MapManager version QTXb20, resulting in 21 linkage groups consisting of 7 or more markers. The total map length was 1543 cM, with an average distance of 3.4 cM between adjacent markers. This is the first published map for a lupin species. The map can be exploited for marker assisted selection for genetic improvement in lupin breeding programs.  相似文献   

17.
A population of 218 recombinant inbred lines (RILs) was developed from the cross of two wheat (Triticum aestivum L.) cultivars, 'Ning 894037' and 'Alondra'. Ning 894037 has resistance to Fusarium head blight (FHB) and Alondra is moderately susceptible. Response of the RILs and their parental lines to FHB infection was evaluated with point inoculation in four experiments both in greenhouse and in field conditions. Distribution of disease severity in the population is continuous, indicating quantitative inheritance of resistance to FHB. Bulked segregant analysis and QTL mapping based on simple sequence repeat (SSR) markers revealed three chromosome regions that are responsible for FHB resistance. A chromosome region on 3BS accounted for 42.5% of the phenotypic variation for FHB resistance. Additional QTLs were located on chromosomes 2D and 6B. These three QTLs jointly accounted for 51.6% of the phenotypic variation. SSR markers linked to the QTLs influencing resistance to FHB have potential for use in breeding programs.  相似文献   

18.
Bacterial wilt caused by Xanthomonas translucens pv. graminis (Xtg) is a major disease of economically important forage crops such as ryegrasses and fescues. Targeted breeding based on seedling inoculation has resulted in cultivars with considerable levels of resistance. However, the mechanisms of inheritance of resistance are poorly understood and further breeding progress is difficult to obtain. This study aimed to assess the relevance of the seedling screening in the glasshouse for adult plant resistance in the field and to investigate genetic control of resistance to bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.). A mapping population consisting of 306 F1 individuals was established and resistance to bacterial wilt was assessed in glasshouse and field experiments. Highly correlated data (r = 0.67–0.77, P < 0.01) between trial locations demonstrated the suitability of glasshouse screens for phenotypic selection. Analysis of quantitative trait loci (QTL) based on a high density genetic linkage map consisting of 368 amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers revealed a single major QTL on linkage group (LG) 4 explaining 67% of the total phenotypic variance (Vp). In addition, a minor QTL was observed on LG 5. Field experiments confirmed the major QTL on LG 4 to explain 43% (in 2004) to 84% (in 2005) of Vp and also revealed additional minor QTLs on LG 1, LG 4 and LG 6. The identified QTLs and the closely linked markers represent important targets for marker-assisted selection of Italian ryegrass.  相似文献   

19.
Populations of the planthopper vector Perkinsiella saccharicida on sugarcane cultivars resistant (cvs QUO and Q87), moderately resistant (cvs Q90 and Q124) and susceptible (cvs NCo310 and Q102) to Fiji disease with known field resistance scores were monitored on the plant (2000–2001) and ratoon (2001–2002) crops. In both crops, the vector population remained very low, reaching its peak in the autumn. The vector population was significantly higher on cultivars susceptible to Fiji disease than on cultivars moderately resistant and resistant to Fiji disease. The number of P. saccharicida adults, nymphs and oviposition sites per plant increased with the increase in the Fiji disease susceptibility. The results suggest that under low vector density, cultivar preference by the planthopper vector mediates Fiji disease resistance in sugarcane. To obtain resistance ratings in the glasshouse that reflect field resistance, glasshouse‐screening trials should be conducted under both low and high vector densities, and the cultivar preference of the planthopper vector recorded along with Fiji disease incidence.  相似文献   

20.
Anthracnose, caused by Colletotrichum truncatum, is a major disease problem and production constraint of lentil in North America. The research was conducted to examine the resistance to anthracnose in PI 320937 lentil and to identify molecular markers linked to the resistance gene in a recombinant inbred line (RIL) population developed from a cross of Eston lentil, the susceptible parent, and PI 320937, the resistant parent. A total of 147 F(5:6) RILs were evaluated for resistance to anthracnose in the greenhouse using isolate 95B36 of C. truncatum. Bulked segregant analysis (BSA) strategy was employed and two contrasting DNA bulks were constructed based on greenhouse inoculation of F(5)-derived F(6) RILs. DNA from the parents and bulks were screened with 700 RAPD primers and seven AFLP primer combinations. Analysis of segregation data indicated that a major dominant gene was responsible for resistance to anthracnose while variations in the resistance level among RILs could be the influences of minor genes. We designate the major gene as LCt-2. MapMaker analysis produced two flanking RAPD markers OPEO6(1250) and UBC-704(700) linked to LCt-2 locus in repulsion (6.4 cM) and in coupling (10.5 cM), respectively. Also, three AFLP markers, EMCTTACA(350) and EMCTTAGG(375) in coupling, and EMCTAAAG(175) in repulsion, were linked to the LCt-2 locus. These markers could be used to tag the LCt-2 locus and facilitate marker-assisted selection for resistance to anthracnose in segregating populations of lentil in which PI 320937 was used as the source of resistance. Also, a broader application of the linked RAPD markers was also demonstrated in Indianhead lentil, widely used as a source of resistance to anthracnose in the breeding program at the Crop Development Centre, University of Saskatchewan. Further selection within the few F(5:6) lines should be effective in pyramiding one or several of the minor genes into the working germplasm of lentil, resulting in a more durable and higher level of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号