共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligonucleotide-directed mutagenesis by microscale 'shot-gun' gene synthesis. 总被引:23,自引:10,他引:23
下载免费PDF全文

T Grundstr?m W M Zenke M Wintzerith H W Matthes A Staub P Chambon 《Nucleic acids research》1985,13(9):3305-3316
We describe a rapid and efficient microscale method for in vitro site-directed mutagenesis by gene synthesis. Mutants are constructed by "shot-gun ligation" of overlapping synthetic oligonucleotides yielding double stranded synthetic DNA of more than 120 nucleotides in length. The terminal oligonucleotides of the DNA segment to be synthesized are designed to create sticky ends complementary to unique restriction sites of a polylinker present in an M13 vector. The oligonucleotides are hybridized and ligated to the M13 vector without any purification of the synthetic DNA segment. After cloning, about half of the progeny from such shot-gun ligations contained the predicted sequence demonstrating the efficacy of this method for gene synthesis and its potential for the extensive mutational analysis of genes. 相似文献
2.
G F Simons G H Veeneman R N Konings J H van Boom J G Schoemakers 《Nucleic acids research》1982,10(3):821-832
3.
4.
Towards targeted mutagenesis and gene replacement in plants 总被引:4,自引:0,他引:4
Advances in the development of biotechnological tools for plant gene disruption and repair have lagged behind the rapid progress made in whole-genome sequencing of many model and crop plant species. Plant DNA-repair machinery predominantly uses non-homologous end-joining (NHEJ), making the homologous recombination (HR)-based methods, which have proved fruitful for gene targeting in non-plant systems, unsuitable for use in plant systems. Two recent reports describe successful targeted mutagenesis and gene targeting in Arabidopsis by either harnessing the plant NHEJ machinery using site-specific induction of double-strand breaks (DSBs), or by activation of a HR pathway through overexpression of a yeast DNA recombination gene in transgenic plants. These reports provide a foundation from which new technologies for site-specific genome alterations in plant species can be developed. 相似文献
5.
Fusobacterium nucleatum is a Gram-negative anaerobe important in dental biofilm ecology and infectious diseases with significant societal impact. The lack of efficient genetic systems has hampered molecular analyses in this microorganism. We previously reported construction of a shuttle plasmid, pHS17, using the native fusobacterial plasmid pFN1 and an erythromycin resistance cassette. However, the host range of pHS17 was restricted to F. nucleatum, ATCC 10953, and the transformation efficiency was limited. This study was undertaken to improve genetic systems for molecular analysis in F. nucleatum. We identified a second F. nucleatum strain, ATCC 23726, which is transformed with improved efficiency compared to ATCC 10953. Two novel second generation pFN1-based shuttle plasmids, pHS23 and pHS30, were developed and enable transformation of ATCC 23726 at 6.2 x 10(4) and 1.5 x 10(6) transformants/mug plasmid DNA, respectively. The transformation efficiency of pHS30, which harbors a catP gene conferring resistance to chloramphenicol, was more than 1000-fold greater than that of pHS17. The improved transformation efficiency facilitated disruption of the chromosomal rnr gene using a suicide plasmid pHS19, the first demonstration of targeted mutagenesis in F. nucleatum. These results provide significant advances in the development of systems for molecular analysis in F. nucleatum. 相似文献
6.
Targeted gene correction employs a site-specific DNA lesion to promote homologous recombination that eliminates mutation in a disease gene of interest. The double-strand break typically used to initiate correction can also result in genomic instability if deleterious repair occurs rather than gene correction, possibly compromising the safety of targeted gene correction. Here we show that single-strand breaks (nicks) and double-strand breaks both promote efficient gene correction. However, breaks promote high levels of inadvertent but heritable genomic alterations both locally and elsewhere in the genome, while nicks are accompanied by essentially no collateral local mutagenesis, and thus provide a safer approach to gene correction. Defining efficacy as the ratio of gene correction to local deletion, nicks initiate gene correction with 70-fold greater efficacy than do double-strand breaks (29.0±6.0% and 0.42±0.03%, respectively). Thus nicks initiate efficient gene correction, with limited local mutagenesis. These results have clear therapeutic implications, and should inform future design of meganucleases for targeted gene correction. 相似文献
7.
Phototransformable fluorescent proteins (FPs) have received considerable attention in recent years, because they enable many new exciting modalities in fluorescence microscopy and biotechnology. On illumination with proper actinic light, phototransformable FPs are amenable to long-lived transitions between various fluorescent or nonfluorescent states, resulting in processes known as photoactivation, photoconversion, or photoswitching. Here, we review the subclass of photoswitchable FPs with a mechanistic perspective. These proteins offer the widest range of practical applications, including reversible high-density data bio-storage, photochromic FRET, and super-resolution microscopy by either point-scanning, structured illumination, or single molecule-based wide-field approaches. Photoswitching can be engineered to occur with high contrast in both Hydrozoan and Anthozoan FPs and typically results from a combination of chromophore cis-trans isomerization and protonation change. However, other switching schemes based on, for example, chromophore hydration/dehydration have been discovered, and it seems clear that ever more performant variants will be developed in the future. 相似文献
8.
Genomic instability in the form of mutations and chromosome rearrangements is usually associated with pathological disorders, and yet it is also crucial for evolution. Two types of elements have a key role in instability leading to rearrangements: those that act in trans to prevent instability--among them are replication, repair and S-phase checkpoint factors--and those that act in cis--chromosomal hotspots of instability such as fragile sites and highly transcribed DNA sequences. Taking these elements as a guide, we review the causes and consequences of instability with the aim of providing a mechanistic perspective on the origin of genomic instability. 相似文献
9.
Thomas Hartmann 《Entomologia Experimentalis et Applicata》1996,80(1):177-188
Based upon a brief historical view, the typical features of plant secondary metabolism and its role in chemical interactions between plants and their environment are discussed. Facts and arguments are presented favouring the hypothesis that secondary metabolism evolved under the selection pressure of a competitive environment. The high degree of chemical freedom of secondary metabolism which, in contrast to primary metabolism, allows structural modifications with almost no restrictions, is stressed as mechanistic basis for the generation of chemical diversity. Biochemical and physiological properties of secondary metabolism are in accordance with such a view. It is suggested that the great chemical diversity and intraspecific variability of secondary metabolism is the result of processes of natural selection which act upon highly variable chemical structures. This view is exemplified by the pyrrolizidine alkaloids, a typical class of secondary compounds. 相似文献
10.
Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. 总被引:164,自引:38,他引:164
下载免费PDF全文

This paper presents a versatile and efficient procedure for the construction of oligodeoxyribonucleotide directed site-specific mutations in DNA fragments cloned into M13 derived vectors. As an example, production of a transition mutation in a clone of the yeast MATa1 gene is described. The oligonucleotide is hybridized to the template DNA and covalently closed closed double stranded molecules are generated by extension of the oligonucleotide primer with E. coli DNA polymerase (large fragment) and ligation with T4 DNA ligase. The resulting double stranded closed circular DNA (CC-DNA) is separated from unligated and incompletely extended molecules by alkaline sucrose gradient centrifugation. This purification is essential for production of mutants at high efficiency. Competent E. coli JM101 cells are transformed with the CC-DNA fraction and single stranded DNA is isolated from individual plaques. The recombinants are screened for mutant molecules by 1) restriction endonuclease screening for the loss of the Hinf I site in the target region, and 2) by dot blot hybridization using the mutagenic oligonucleotide as probe. Double stranded DNA is isolated from the sequencing. Efficiency of mutant production is in the range of 10-45% and no precautions to prevent mismatch repair are required. 相似文献
11.
Oxidative DNA damage is thought to contribute to carcinogenesis, ageing, and neurological degeneration. Further, the cumulative risk of cancer increases dramatically with age in humans. In general terms, cancer can be regarded as a degenerative disease of ageing. There is evidence for the accumulation of oxidative DNA damage with age based on studies mainly measuring an increase in 8-oxoguanine. 8-Oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) is formed in the nucleotide pool of a cell during normal cellular metabolism. When 8-oxoguanine is incorporated into DNA causes mutation. Organisms possess 8-oxo-dGTPase, an enzyme that specifically degrades 8-oxo-dGTP to 8-oxo-dGMP. To analyze the function of MTH1 with 8-oxo-dGTPase activity in vivo, we generated a mouse line carrying a mutant MTH1 allele created by targeted gene disruption. MTH1 homozygous mutant mice were found to have a physically normal appearance, but seemed to have lost 8-oxo-dGTPase activity in liver extracts. When we examined the susceptibility of the mutant mice to spontaneous tumorigenesis, no significant difference was observed in survival rate of MTH1+/+ and MTH1-/- mice. However, pathological examination revealed a statistically significant difference in the incidence of tumors. More tumors were formed in lungs, livers, and stomachs of MTH1-/- mice than in those of the wild type mice. These studies with MTH1-null mutant mice provided an important insight into the role of this nucleotide sanitization enzyme in terms of the spontaneous tumorigenesis as well as mutagenesis caused by the oxygen-induced DNA damage. 相似文献
12.
Simonato F Campanaro S Lauro FM Vezzi A D'Angelo M Vitulo N Valle G Bartlett DH 《Journal of biotechnology》2006,126(1):11-25
Two-thirds of Earth's surface is covered by oceans, yet the study of this massive integrated living system is still in its infancy. Various environmental variables, such as high salinity, low and changeable nutrient availability and depth-correlated gradients of light, temperature, nutrients and pressure shape the diversity, physiology and ecology of marine species. As oceans present an average depth of 3800 m, deep-sea ecosystems represent the most common marine ecological niche. One of the key environment variables that influences the life and evolution of deep-sea organisms is high pressure. This extreme widespread condition requires specific adaptations, the nature of which remains largely unknown. Recent advances in genomic approaches, such as in sequencing technologies and global expression profiling, are rapidly increasing the data available to understand microbial evolution, biochemistry, physiology and diversity. This review summarises the analysis of the results published so far about microbial high pressure adaptation from a genomic point of view. Understanding high pressure adaptation mechanisms is not just a scientific exercise but has important biotechnological implications. For example, hydrostatic pressure is a reality for food science and technology, both for food preparation and preservation. An understanding of the effects of pressure on biomolecules will expand its use in the medical, industrial and biotechnological fields. 相似文献
13.
Fabret C Poncet S Danielsen S Borchert TV Ehrlich SD Jannière L 《Nucleic acids research》2000,28(21):e95
We describe a method to generate in vivo collections of mutants orders of magnitude larger than previously possible. The method favors accumulation of mutations in the target gene, rather than in the host chromosome. This is achieved by propagating the target gene on a plasmid, in Escherichia coli cells, within the region preferentially replicated by DNA polymerase I (Pol I), which replicates only a minor fraction of the chromosome. Mutagenesis is enhanced by a conjunction of a Pol I variant that has a low replication fidelity and the absence of the mutHLS system that corrects replication errors. The method was tested with two reporter genes, encoding lactose repressor or lipase. The proportion of mutants in the collection was estimated to reach 1% after one cycle of growth and 10% upon prolonged cell cultivation, resulting in collections of 1012–1013 mutants per liter of cell culture. The extended cultivation did not affect growth properties of the cells. We suggest that our method is well suited for generating protein variants too rare to be present in the collections established by methods used previously and for isolating the genes that encode such variants by submitting the cells of the collections to appropriate selection protocols. 相似文献
14.
Oligonucleotide-directed gene repair in wheat using a transient plasmid gene repair assay system 总被引:1,自引:0,他引:1
Oligonucleotide-directed gene repair is a potential technique for agricultural trait modification in economically important
crops. However, large variation in the repair frequencies among the scientific reports indicates that there are many factors
influencing the repair process. We report here a transient assay system using GFP as a reporter for testing the efficiency
of plasmid DNA repair in cultured wheat cells. This assay showed that osmotic medium supplemented with 2,4-D increased the
oligo-targeting frequency, and that the repair of a point mutation was more efficient than repair of a single base deletion
mutation in cultured scutellum cells of immature wheat embryos. This study provides the first evidence that oligonucleotide-directed
mutagenesis is applicable to regenerable cultured wheat scutellum cells. 相似文献
15.
Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction 总被引:3,自引:0,他引:3
Kolb AF Coates CJ Kaminski JM Summers JB Miller AD Segal DJ 《Trends in biotechnology》2005,23(8):399-406
A variety of technological advances in recent years have made permanent genetic manipulation of an organism a technical possibility. As the details of natural biological processes for genome modification are elucidated, the enzymes catalyzing these events (transposases, recombinases, integrases and DNA repair enzymes) are being harnessed or modified for the purpose of intentional gene modification. Targeted integration and gene repair can be mediated by the DNA-targeting specificity inherent to a particular enzyme, or rely on user-designed specificities. Integration sites can be defined by using DNA base-pairing or protein-DNA interaction as a means of targeting. This review will describe recent progress in the development of 'user-targetable' systems, particularly highlighting the application of custom DNA-binding proteins or nucleic acid homology to confer specificity. 相似文献
16.
17.
18.
Seller MJ 《Bioethics》1993,7(2-3):135-140
...Thus, my judgement is that a human embryo is not a human person, and so we may do experiments on it which involve killing it. But my judgement is also that a human embryo has the potential to become a human being. The consequence of this attribute is that it imposes limits on the kinds of experiments which may be performed on human embryos. It is this which sets the boundaries. Experiments which may harm the embryo while still allowing it subsequently to realise its potential, and become a person, should not be permitted. It is the potentiality of the human embryo which governs our behaviour towards it. Its potential makes it special, and radically different from any other human tissue. This potential which the early embryo has means that great respect must always be accorded it, and great thought and care must surround any dealings with it.... 相似文献
19.
A mutant strain of the cyanobacterium Synechocystis sp. PCC (Pasteur Culture Collection) 6803 has been developed in which psbB, the gene coding for the chlorophyl a-binding protein CP47 in Photosystem II (PSII), has been deleted. This deletion mutant can be used for the reintroduction of modified psbB into the cyanobacterium. To study the role of a large hydrophilic region in CP47, presumably located on the lumenal side of the thylakoid membrane between the fifth and sixth membrane-spanning regions, specific deletions have been introduced in psbB coding for regions within this domain. One psbB mutation leads to deletion of Gly-351 to Thr-365 in CP47, another psbB mutation was targeted towards deletion of Arg-384 to Val-392 in this protein. The deletion from Gly-351 to Thr-365 results in a loss of PSII activity and of photoautotrophic growth of the mutant, but the deletion between Arg-384 and Val-392 retains PSII activity and the ability to grow photoautotrophically. The mutant strain with the deletion from Gly-351 to Thr-365 does not assemble a stable PSII reaction center complex in its thylakoid membranes, and exhibits diminished levels of CP47 and of the reaction center proteins D1 and D2. In contrast to the Arg-384 to Val-392 portion of this domain, the region between Gly-351 and Thr-365 appears essential for the normal structure and function of photosystem II. 相似文献
20.
A generally applicable system for targeted mutagenesis of a chromosomal sequence is described. The Escherichia coli tufA gene was mutated using a recombinant M13mp9 phage vector carrying a tuf gene. Integration via crossing over with the chromosomal tufA target gene produced an M13 lysogen. These lysogens were screened for resistance to kirromycin. The M13 phage carrying tufA mutations were efficiently retrieved by a genetic procedure. Genetic mapping was performed with the M13 vectors. The same recombinant M13 phage was used for mutagenesis, lysogen formation, gene replacement, retrieval, mapping and sequencing of kirromycin mutants. Three different mutations yielding resistance to kirromycin were found: two of these have previously been found and characterised, while the third mutation, Gly316 Asp, is a new mutant. We also report the identification of a fourth kirromycin-resistant mutant, Gln124 Lys. 相似文献