首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphonuclear neutrophils (PMN) in Pseudomonas aeruginosa-infected cornea are required to clear bacteria from affected tissue, yet their persistence may contribute to irreversible tissue destruction. This study examined the role of C-X-C chemokines in PMN infiltration into P. aeruginosa-infected cornea and the contribution of these mediators to disease pathology. After P. aeruginosa challenge, corneal PMN number and macrophage inflammatory protein-2 (MIP-2) and KC levels were compared in mice that are susceptible (cornea perforates) or resistant (cornea heals) to P. aeruginosa infection. While corneal PMN myeloperoxidase activity (indicator of PMN number) was similar in both groups of mice at 1 and 3 days postinfection, by 5-7 days postinfection corneas of susceptible mice contained a significantly greater number of inflammatory cells. Corneal MIP-2, but not KC, levels correlated with persistence of PMN in the cornea of susceptible mice. To test the biological relevance of these data, resistant mice were treated systemically with rMIP-2. This treatment resulted in increased corneal PMN number and significantly exacerbated corneal disease. Conversely, administration of neutralizing MIP-2 pAb to susceptible mice reduced both PMN infiltration and corneal destruction. Collectively, these findings support an important role for MIP-2 in recruitment of PMN to P. aeruginosa-infected cornea. These data also strongly suggest that a timely down-regulation of the host inflammatory response is critical for resolution of infection.  相似文献   

2.
Evidence suggests that Pseudomonas aeruginosa stromal keratitis and corneal perforation (susceptibility) is a CD4(+) T cell-regulated inflammatory response following experimental P. aeruginosa infection. This study examined the role of Langerhans cells (LC) and the B7/CD28 costimulatory pathway in P. aeruginosa-infected cornea and the contribution of costimulatory signaling by this pathway to disease pathology. After bacterial challenge, the number of LC infiltrating the central cornea was compared in susceptible C57BL/6 (B6) vs resistant (cornea heals) BALB/c mice. LC were more numerous at 1 and 6 days postinfection (p.i.), but were similar at 4 days p.i., in susceptible vs resistant mice. Mature, B7 positive-stained LC in the cornea and pseudomonas Ag-associated LC in draining cervical lymph nodes also were increased significantly p.i. in susceptible mice. To test the relevance of these data, B6 mice were treated systemically and subconjunctivally with neutralizing B7 (B7-1/B7-2) mAbs. Treatment decreased corneal disease severity and reduced significantly the number of B7-positive cells as well as the recruitment and activation of CD4(+) T cells in the cornea. IFN-gamma mRNA levels also were decreased significantly in the cornea and in draining cervical lymph nodes of mAb-treated mice. When CD28(-/-) animals were tested, they exhibited a less severe disease response (no corneal perforation) than wild-type B6 mice and had a significantly lower delayed-type hypersensitivity response to heat-killed pseudomonas Ag. These results support a critical role for B7/CD28 costimulation in susceptibility to P. aeruginosa ocular infection.  相似文献   

3.
Caveolin-1 (Cav-1), an important composition protein within the flask-shaped membrane invaginations termed caveolae, may play a role in host defense against infections. However, the phenotype in Pseudomonas aeruginosa-infected cav1 knock-out (KO) mice is still unresolved, and the mechanism involved is almost entirely unknown. Using a respiratory infection model, we confirmed a crucial role played by Cav-1 in host defense against this pathogen because Cav-1 KO mice showed increased mortality, severe lung injury, and systemic dissemination as compared with wild-type (WT) littermates. In addition, cav1 KO mice exhibited elevated inflammatory cytokines (IL-6, TNF-α, and IL-12a), decreased phagocytic ability of macrophages, and increased superoxide release in the lung, liver, and kidney. We further studied relevant cellular signaling processes and found that STAT3 and NF-κB are markedly activated. Our data revealed that the Cav-1/STAT3/NF-κB axis is responsible for a dysregulated cytokine response, which contributes to increased mortality and disease progression. Moreover, down-regulating Cav-1 in cell culture with a dominant negative strategy demonstrated that STAT3 activation was essential for the translocation of NF-κB into the nucleus, confirming the observations from cav1 KO mice. Collectively, our studies indicate that Cav-1 is critical for inflammatory responses regulating the STAT3/NF-κB pathway and thereby impacting P. aeruginosa infection.  相似文献   

4.
A key endothelial receptor in leukocyte-endothelial cell (EC) interactions is ICAM-1. ICAM-1 is constitutively expressed at low levels on vascular ECs, and its levels significantly increase following stimulation with many proinflammatory agents. This study provides evidence that in inflamed arterioles of anesthetized mice (65 mg/kg ip Nembutal), ICAM-1 mediates leukocyte rolling, in contrast to its expected role of mediating firm adhesion in venules. The number of leukocytes rolling on arteriolar ECs is decreased in ICAM-1 knockout (KO) compared with wild-type (WT) mice (KO, 6.0 +/- 0.9; WT, 12.0 +/- 1.0 leukocytes/40 s; P < 0.05), whereas the leukocyte-rolling number in venules remains unaffected (KO, 5.6 +/- 0.9; WT, 7.0 +/- 0.7 leukocytes/40 s; n = 13-15 sites). We also show that the fraction of leukocytes that is rolling on arteriolar ECs does so with a higher characteristic velocity (>70 microm/s), and, furthermore, that the distance over which rolling contacts with the arteriolar wall are maintained is ICAM-1 dependent. In ICAM-1 KO animals or in WT mice in the presence of ICAM-1-blocking antibody, leukocytes rolled significantly shorter distances over the sampled 200-microm vessel length compared with WT (68 +/- 6.7 and 55 +/- 9.4 vs. 85 +/- 12.9% total, respectively, n = 4 sites, P < 0.05). We also found evidence that in ICAM-1 KO mice, a significant fraction of leukocyte rolling and adhesive interactions with arteriolar ECs could be accounted for by upregulation of another adhesion molecule, VCAM-1, providing an important illustration of how expression of related proteins can be altered following genetic ablatement of a target molecule (in this case ICAM-1).  相似文献   

5.
Pseudomonas aeruginosa keratitis is one of the most destructive diseases of the cornea. The host response to this infection is critical to the outcome, and is regulated by cytokines produced in the ocular tissue. In this study, we assessed the relative contribution of the cytokines produced in the cornea to the inflammatory response of the whole eye to gain a better understanding of the inflammatory and regulatory processes in the ocular environment during localized corneal infection. C57BL/6 mice were challenged by topical application of P. aeruginosa to wounded corneas. Corneas and whole eyes were harvested 24 h post-challenge and bacterial numbers, myeloperoxidase levels and the levels of cytokines known to be important in keratitis were determined. The site of production of IL-6 and KC in the retina was determined by in situ hybridization. Before infection, 90% of macrophage inflammatory protein (MIP)-2 and approximately 80% of all IFN-gamma and IL-10 produced constitutively in the eye was found outside the cornea. Twenty-four hours after infection, bacterial numbers, levels of myeloperoxidase, and levels of MIP-2 and IL-1 were not different, whether measured in cornea or whole eye. However, expression of IL-6, KC, IFN-gamma and IL-10 was significantly greater in whole eyes than in the corneas of infected eyes. The cells expressing IL-6 and KC in the retina were identified by in situ hybridization. This study indicates that during corneal inflammation, the response of the whole eye as well as the cornea needs to be considered.  相似文献   

6.
CD1d-restricted NKT cells are reported to play a critical role in the host defense to pulmonary infection with Pseudomonas aeruginosa. However, the contribution of a major subset expressing a Valpha14-Jalpha18 gene segment remains unclear. In the present study, we re-evaluated the role of NKT cells in the neutrophilic inflammatory responses and host defense to this infection using mice genetically lacking Jalpha18 or CD1d (Jalpha18KO or CD1dKO mice). These mice cleared the bacteria in lungs at a comparable level to wild-type (WT) mice. There was no significant difference in the local neutrophilic responses, as shown by neutrophil counts and synthesis of MIP-2 and TNF-alpha, in either KO mice from those in WT mice. Administration of alpha-galactosylceramide, a specific activator of Valpha14+ NKT cells, failed to promote the bacterial clearance and neutrophilic responses, although the same treatment increased the synthesis of IFN-gamma, suggesting the involvement of this cytokine downstream of NKT cells. In agreement against this notion, these responses were not further enhanced by administration of recombinant IFN-gamma in the infected Jalpha18KO mice. Our data indicate that NKT cells play a limited role in the development of neutrophilic inflammatory responses and host defense to pulmonary infection with P. aeruginosa.  相似文献   

7.
Pseudomonas aeruginosa keratitis destroys the cornea in susceptible Th1 responder C57BL/6 (B6), but not resistant Th2 responder (BALB/c) mice. To determine whether single Ig IL-1R-related molecule (SIGIRR) played a role in resistance, mRNA and protein expression levels were tested. Both were constitutively expressed in the cornea of the two mouse groups. A disparate mRNA and protein expression pattern was detected in the cornea of BALB/c vs B6 mice after infection. SIGIRR protein decreased significantly in BALB/c over B6 mice at 1 day postinfection. Thus, BALB/c mice were injected with an anti-SIGIRR Ab or IgG control. Anti-SIGIRR Ab over control-treated mice showed increased corneal opacity, stromal damage, and bacterial load. Corneal mRNA levels for IL-1beta, MIP-2, IL-1R1, TLR4, IL-18, and IFN-gamma and protein levels for IL-1beta and MIP-2 also were significantly up-regulated in anti-SIGIRR Ab over control mice, while no changes in polymorphonuclear cell number, IL-4, or IL-10 mRNA expression were detected. To further define the role of SIGIRR, RAW264.7 macrophage-like cells were transiently transfected with SIGIRR and stimulated with heat-killed P. aeruginosa or LPS. SIGIRR transfection significantly decreased mRNA levels for IL-1R1, TLR4, and type 1 immune response-associated cytokines (IL-12, IL-18, and IFN-gamma) as well as proinflammatory cytokines IL-1beta and MIP-2 protein expression. SIGIRR also negatively regulated IL-1 and LPS, but not poly(I:C)-mediated signaling and NF-kappaB activation. These data provide evidence that SIGIRR is critical in resistance to P. aeruginosa corneal infection by down-regulating type 1 immunity, and that it negatively regulates IL-1 and TLR4 signaling.  相似文献   

8.
Natural killer T (NKT) cells are a unique T-cell population that is positively selected by CD1d-expressing cells. In this study, we examined the kinetics of conventional CD4+TCRbeta+ and CD4-TCRbeta+ cells along with various NKT cell populations from WT and CD1d KO mice after oral Listeria monocytogenes (Lm) infection at different time points in tissue compartments. We found that CD4+TCRbeta+ cells expressing NK1.1+ (NKT) were constitutively expressed in the lung of both strains of mice, but disappeared after infection. In contrast, CD4-TCRbeta+ NK1.1+ cells migrated to the spleen. Here, we demonstrated that endogenous IL-12 was predominantly expressed in the spleen of CD1d KO mice 2 days after infection, whereas IL-4 was predominantly expressed in the liver of WT mice. Higher levels of IFN-gamma were expressed in MLN of CD1d KO but not in WT mice on day 5. Thus, tissue-specific ligands orchestrate the localization and activation of NKT cells to control immune response to Listeria, which may explain the difference in disease susceptibility.  相似文献   

9.
The kinetics of IL-1 (alpha and beta) production after Pseudomonas aeruginosa corneal infection was examined in susceptible (cornea perforates) C57BL/6J (B6) and resistant (cornea heals) BALB/cByJ (BALB/c) mice. IL-1alpha and -1beta (mRNA and protein) were elevated in both mouse strains, and levels peaked at 1 day postinfection (p.i. ). Significantly greater amounts of IL-1 protein were detected in B6 vs BALB/c mice at 1 and 3 days p.i. At 5 days p.i., IL-1alpha and -1beta (mRNA and protein) remained elevated in B6, but began to decline in BALB/c mice. To test the significance of elevated IL-1 in B6 mice, a polyclonal neutralizing Ab against IL-1beta was used to treat infected B6 mice. A combination of subconjunctival and i.p. administration of IL-1beta polyclonal Ab significantly reduced corneal disease. The reduction in disease severity in infected B6 mice was accompanied by a reduction in corneal polymorphonuclear neutrophil number, bacterial load, and macrophage inflammatory protein-2 mRNA and protein levels. These data provide evidence that IL-1 is an important contributor to P. aeruginosa corneal infection. At least one mechanism by which prolonged and/or elevated IL-1 expression contributes to irreversible corneal tissue destruction appears to be by increasing macrophage inflammatory protein-2 production, resulting in a prolonged stimulation of polymorphonuclear neutrophil influx into cornea. In contrast, a timely down-regulation of IL-1 appears consistent with an inflammatory response that is sufficient to clear the bacterial infection with less corneal damage.  相似文献   

10.
Tuberculosis, caused by Mycobacterium (M.) tuberculosis, is a devastating infectious disease causing many deaths world-wide every year. Successful host defense mainly depends on a strong Th type 1 response. We investigated the role of T1/ST2 (recently identified as the receptor for IL-33), a typical Th2 marker in the assumption that a shift towards a beneficial Th1 response would occur in the absence of ST2. For this, ST2 KO and WT mice were intranasally infected with a virulent strain of M. tuberculosis (150 CFU). In line with our hypothesis, ST2 KO animals displayed increased numbers of lymphocytes infiltrating the lung after 2 weeks of infection, increased IFNγ production by splenocytes in ST2 KO mice early in infection and enhanced lung IFNγ levels at the chronic phase of the disease. However, we did not detect any differences between ST2 KO and WT mice in mycobacterial loads in lungs or liver after M. tuberculosis infection. The pulmonary inflammatory response, as measured by relative lung weights, cytokine and chemokine levels as well as histopathological analysis, was similar in ST2 KO and WT mice. These data suggest that apart from inducing a modest shift towards the Th1 response, the role of ST2 during murine M. tuberculosis infection is limited.  相似文献   

11.
The existence of gammadelta T cells has been known for over 15 years, but their significance in innate immunity to virus infections has not been determined. We show here that gammadelta T cells are well suited to provide a rapid response to virus infection and demonstrate their role in innate resistance to vaccinia virus (VV) infection in both normal C57BL/6 and beta TCR knockout (KO) mice. VV-infected mice deficient in gammadelta T cells had significantly higher VV titers early postinfection (PI) and increased mortality when compared with control mice. There was a rapid and profound VV-induced increase in IFN-gamma-producing gammadelta T cells in the peritoneal cavity and spleen of VV-infected mice beginning as early as day 2 PI. This rapid response occurred in the absence of priming, as there was constitutively a significant frequency of VV-specific gammadelta T cells in the spleen in uninfected beta TCR KO mice, as demonstrated by limiting dilution assay. Also, like NK cells, another mediator of innate immunity to viruses, gammadelta T cells in uninfected beta TCR KO mice expressed constitutive cytolytic activity. This cytotoxicity was enhanced and included a broader range of targets after VV infection. VV-infected beta TCR KO mice cleared most of the virus by day 8 PI, the peak of the gammadelta T cell response, but thereafter the gammadelta T cell number declined and the virus recrudesced. Thus, gammadelta T cells can be mediators of innate immunity to viruses, having a significant impact on virus replication early in infection in the presence or absence of the adaptive immune response.  相似文献   

12.
Two key characteristics of the inflammatory response are the recruitment of leukocytes to inflamed tissue as well as changes in vessel permeability. We explored the relationship between these two processes using intravital confocal microscopy in cremasters of anesthetized (65 mg/kg Nembutal ip) mice. We provide direct evidence that intercellular adhesion molecule-1 (ICAM-1) links leukocyte-endothelial cell interactions and changes in solute permeability (Ps). Importantly, we show that arterioles, not just venules, respond to proinflammatory stimuli, thus contributing to microvascular exchange. We identified two independent, ICAM-1-mediated pathways regulating Ps. Under control conditions in wild-type (WT) mice, there is a constitutive PKC-dependent pathway (Ps = 1.0 +/- 0.10 and 2.2 +/- 0.46 x 10(-6) cm/s in arterioles and venules, respectively), which was significantly reduced in ICAM-1 knockout (KO) mice (Ps = 0.54 +/- 0.07 and 0.77 +/- 0.11 x 10(-6) cm/s). The PKC inhibitor bisindolylmaleimid l (1 micromol/l in 0.01% DMSO) decreased P(s) in WT mice to levels similar to those in ICAM-1 KO mice. Likewise, a PKC activator (phorbol-12-myristate-acetate; 1 micromol/l in 0.01% DMSO) successfully restored Ps in ICAM-1 KO vessels to be not different from that of the WT controls. On the other hand, during TNF-alpha-induced inflammation, Ps in WT mice was significantly increased (2-fold in venules and 2.5-fold in arterioles) in a Src-dependent and PKC-independent manner. The blockade of Src (PP2; 2 micromol/l in 0.01% DMSO) but not PKC significantly reduced the TNF-alpha-dependent increase in Ps. We conclude that ICAM-1 plays an essential role in the regulation of Ps in microvessels and that there are two separate (constitutive and inducible) signaling pathways that regulate permeability under normal and inflamed conditions.  相似文献   

13.
Dendritic cells (DCs) regulate both innate and adaptive immune responses. In this article, we exploit the unique avascularity of the cornea to examine a role for local or very early infiltrating DCs in regulating the migration of blood-derived innate immune cells toward HSV-1 lesions. A single systemic diphtheria toxin treatment 2 d before HSV-1 corneal infection transiently depleted CD11c(+) DCs from both the cornea and lymphoid organs of CD11c-DTR bone marrow chimeric mice for up to 24 h postinfection. Transient DC depletion significantly delayed HSV-1 clearance from the cornea through 6 d postinfection. No further compromise of viral clearance was observed when DCs were continuously depleted throughout the first week of infection. DC depletion did not influence extravasation of NK cells, inflammatory monocytes, or neutrophils into the peripheral cornea, but it did significantly reduce migration of NK cells and inflammatory monocytes, but not neutrophils, toward the HSV-1 lesion in the central cornea. Depletion of NK cells resulted in similar loss of viral control to transient DC ablation. Our findings demonstrate that resident corneal DCs and/or those that infiltrate the cornea during the first 24 h after HSV-1 infection contribute to the migration of NK cells and inflammatory monocytes into the central cornea, and are consistent with a role for NK cells and possibly inflammatory monocytes, but not polymorphonuclear neutrophils, in clearing HSV-1 from the infected cornea.  相似文献   

14.
BACKGROUND: Interferon (IFN)-gamma is a key to protective immunity against a variety of intracellular bacterial infections, including Chlamydia trachomatis. Interleukin (IL)-18, a recently identified Th1 cytokine, together with IL-12 is a strong stimulator for IFN-gamma production. We investigated the relative roles of IL-18 and IL- 12 in protective immunity to C. trachomatis mouse pneumonitis (MoPn) infection using gene knockout (KO) and wild-type (WT) mice. MATERIALS AND METHODS: Mice were intranasally infected with C. trachomatis MoPn and protective immunity was assessed among groups of mice by daily body weight changes, lung growth of MoPn, and histopathological appearances at day 10 postinfection. The corresponding immune responses for each group of mice at the same postinfection time point were evaluated by measuring antigen-specific antibody isotype responses and cytokine profiles. RESULTS: Our results showed that IL-18 deficiency had little or no influence on clearance of MoPn from the lung, although KO mice exhibited slightly more severe inflammatory reactions in lung tissues, as well as reduced systemic and local IFN-gamma production, compared with WT mice. Results with IL-18 KO mice were in sharp contrast to those observed with IL-12 KO mice that showed substantially reduced clearance of MoPn from the lungs, substantial reductions of antigen-specific systemic and lung IFN-gamma production, decreased ratio of MoPn-specific immunoglobulin G (IgG)2a/IgG1, and severe pathological changes in the lung with extensive polymorphonuclear, instead of mononuclear, cell infiltration. Exogenous IL-12 or IL-18 was able to increase IFN-gamma production in IL-18 KO mice; whereas, only exogenous IL-12, but not IL-18, enhanced IFN-gamma production in IL-12 KO mice. Caspase-1 is the key protease for activation of IL-18 precursor into the bioactive form, and caspase-1 KO mice also displayed similar bacterial clearance and body weight loss to that in WT mice at early stages of MoPn infection. This further confirmed that IL-18 was not essential for host defense against chlamydia infection. CONCLUSIONS: These results suggest that IL-12, rather than IL-18, plays the dominant role in the development of protective immunity against chlamydia lung infection, although both cytokines are involved in the in vivo regulation of IFN-gamma production.  相似文献   

15.
Tumor necrosis factor alpha (TNF-alpha) has been shown to have a protective role in the eyes and brains of herpes simplex virus type 1 (HSV-1)-infected mice. To determine whether overexpression of TNF-alpha affected the course of virus infection following uniocular anterior chamber inoculation, a recombinant of HSV-1 that produces TNF-alpha constitutively (KOSTNF) was constructed. BALB/c mice were injected with the TNF-alpha recombinant, a recombinant containing the pCI plasmid, a recombinant rescue virus, or the parental virus. Flow cytometry and immunohistochemistry were used to identify virus-infected cells and to determine the numbers and types of infiltrating inflammatory cells in the uninjected eyes. Virus titers were determined by plaque assay. There were no differences among the groups in virus titers or the route and timing of virus spread in the injected eyes or in the suprachiasmatic nuclei. However, in the uninjected eyes of KOSTNF-infected mice, TNF-alpha expression was increased and there were more viral antigen-positive cells and immune inflammatory cells. There was earlier microscopic evidence of retinal infection and destruction in these mice, and the titers of virus in the uninjected eyes were significantly increased in KOSTNF-infected mice on day 7 postinfection compared with those of KOSpCI-, KOS6beta rescue-, or KOS6beta-infected mice. The results suggest that instead of moderating infection and reducing virus spread, overexpression of TNF-alpha has deleterious effects due to increased inflammation and virus infection that result in earlier destruction of the retina of the uninoculated eye.  相似文献   

16.
Clostridium difficile has emerged as the important causative agent of antibiotics-associated pseudomembranous colitis; especially its toxin A is presumed to be responsible for the colitis. We examined the pathophysiological roles of IFN-gamma in toxin A-induced enteritis using IFN-gamma knockout (KO) mice. When toxin A of C. difficile was injected into the ileal loops of BALB/c wild-type (WT) mice, massive fluid secretion, disruption of intestinal epithelial structure, and massive neutrophil infiltration developed within 4 h after the injection. IFN-gamma protein was faintly detected in some CD3-positive lymphocytes in the lamina propria and submucosa of the ileum of untreated WT mice. On the contrary, at 2 and 4 h after toxin A injection, IFN-gamma protein was detected in infiltrating neutrophils and to a lesser degree in CD3-positive lymphocytes. In the ileum of WT mice, toxin A treatment markedly enhanced the gene expression of TNF-alpha, macrophage inflammatory protein-1alpha and -2, KC, and ICAM-1 >2 h after treatment. In contrast, the histopathological changes were marginal, without enhanced fluid secretion in the ileum of toxin A-treated IFN-gamma KO mice. Moreover, toxin A-induced gene expression of TNF-alpha, neutrophil chemotactic chemokines, and ICMA-1 was remarkably attenuated in IFN-gamma KO mice. Furthermore, pretreatment of WT mice with a neutralizing anti-IFN-gamma Ab prevented toxin A-induced enteritis. These observations indicate that IFN-gamma is the crucial mediator of toxin A-induced acute enteritis and suggest that IFN-gamma is an important molecular target for the control of C. difficile-associated pseudomembranous colitis.  相似文献   

17.
In this study, we investigated the involvement of Th1 cytokines in the expression of cell adhesion molecules (CAM) and recruitment of inflammatory cells to the heart of mice infected with Trypanosoma cruzi. Our results show that endogenously produced IFN-gamma is essential to induce optimal expression of VCAM-1 and ICAM-1 on the cardiac vascular endothelium of infected mice. Furthermore, the influx of inflammatory cells into the cardiac tissue was impaired in Th1 cytokine-deficient infected mice, paralleling the intensity of VCAM-1 and ICAM-1 expression on the vascular endothelium. Consistent with the importance of ICAM-1 in host resistance, ICAM-1 knockout (KO) mice were highly susceptible to T. cruzi infection, as assessed by mortality rate, parasitemia, and heart tissue parasitism. The enhanced parasitism was associated with a decrease in the numbers of CD4(+) and CD8(+) T lymphocytes in the heart tissue of ICAM-1 KO mice. Additionally, ICAM-1 KO mice mounted an unimpaired IFN-gamma response and IFN-gamma-dependent production of reactive nitrogen intermediates and parasite- specific IgG2a. Supporting the participation of ICAM-1 in cell migration during T. cruzi infection, the entrance of adoptively transferred PBL from T. cruzi-infected wild-type C57BL/6 mice into the cardiac tissue of ICAM-1 KO mice was significantly abrogated. Therefore, we favor the hypothesis that ICAM-1 plays a crucial role in T lymphocyte recruitment to the cardiac tissue and host susceptibility during T. cruzi infection.  相似文献   

18.
Lipocalin 2 (Lcn2) is a bacteriostatic factor produced during the innate immune response to bacterial infection. Whether Lcn2 has a function in viral infection is unknown. We investigated the regulation and function of Lcn2 in the central nervous system (CNS) of mice during West Nile virus (WNV) encephalitis. Lcn2 mRNA and protein were induced in the brain by day 5, and this induction increased further by day 7 postinfection but was delayed compared with the induction of the toll-like receptor 3 (TLR3) gene, retinoic acid-inducible gene 1 (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) gene. The Lcn2 mRNA and protein were both found at high levels in the choroid plexus, vascular endothelium, macrophage/microglia, and astrocytes. However, some neuronal subsets contained Lcn2 protein but no detectable mRNA. In Lcn2 knockout (KO) mice, with the exception of CXC motif chemokine 5 (CXCL5), which was significantly more downregulated than in wild-type (WT) mice, expression levels of a number of other host response genes were similar in the two genotypes. The brain from Lcn2 and WT mice with WNV encephalitis contained similar numbers of infiltrating macrophages, granulocytes, and T cells. Lcn2 KO and WT mice had no significant difference in tissue viral loads or survival after infection with different doses of WNV. We conclude that Lcn2 gene expression is induced to high levels in a time-dependent fashion in a variety of cells and regions of the CNS of mice with WNV encephalitis. The function of Lcn2 in the host response to WNV infection remains largely unknown, but our data indicate that it is dispensable as an antiviral or immunoregulatory factor in WNV encephalitis.  相似文献   

19.
Mycobacterial infection in MyD88-deficient mice   总被引:7,自引:0,他引:7  
MyD88 is an adaptor protein that plays a major role in TLR/IL-1 receptor family signaling. To understand the role of MyD88 in the development of murine tuberculosis in vivo, MyD88 knockout (KO) mice aerially were infected with Mycobacterium tuberculosis. Infected MyD88 mice were not highly susceptible to M. tuberculosis infection, but they developed granulomatous pulmonary lesions with neutrophil infiltration which were larger than those in wild-type (WT) mice (P < 0.01). The pulmonary tissue levels of mRNA for iNOS and IL-18 were slightly lower, but levels of mRNA for IL-1 beta, IL-2, IL-4, IL-6, IL-10, IFN-gamma, and TGF-beta were higher in MyD88 KO mice. IFN-gamma, TNF-alpha, IL-1 beta, and IL-12 also were high in the sera of MyD88 KO mice. There were no statistically significant differences in the expression of TNF-alpha, IL-12, and ICAM-1 mRNA between MyD88 KO and WT mice. Thus, MyD88 deficiency did not influence the development of murine tuberculosis. NF-kappa B activity was similar in the alveolar macrophages from the lung tissues of MyD88 KO and WT mice. Also, there may be a TLR2-specific, MyD88-independent IL-1 receptor/TLR-mediated pathway to activate NF-kappa B in the host defense against mycobacterial infection.  相似文献   

20.
To better understand the mechanism of lung infection with Pseudomonas aeruginosa (P. aeruginosa), many techniques have been developed in order to establish lung infection in rodents. A model of chronic lung infection, using tracheotomy to inoculate the bacteria, has been extensively used in the cystic fibrosis (CF) mouse model of lung infection. The cystic fibrosis transmembrane channel (Cftr) knockout (KO) mice are smaller than normal mice and are more sensitive to housing and nutritional conditions, leading to small amounts of animals being available for experiments. Because of these characteristics, and because of the invasiveness of the infection procedure which we, and others, have been using to mimic the lung infection, we sought to find an alternative way to study the inflammatory response during lung P. aeruginosa infection. The technique we describe here consists of the injection of bacterial beads directly into the lungs through the mouth without the need of any tracheal incisions. This technique of direct pulmonary delivery enables much faster infection of the animals compared with the intratracheal technique previously used. The use of this less invasive technique allows the exclusion of the surgery-related inflammation. Our results show that, using the direct pulmonary delivery technique, the KO mice were more susceptible to P. aeruginosa lung infection compared with their wild-type (WT) controls, as shown by their increased weight loss, higher bacterial burden and more elevated polymorphonuclear (PMN) alveolar cell recruitment into the lungs. These differences are consistent with the pathological profiles observed in CF patients infected with P. aeruginosa. Overall, this method simplifies the infection procedure in terms of its duration and invasiveness, and improves the survival rate of the KO mice when compared with the previously used intratracheal procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号