首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombin activation of factor V constitutes an important feedback reaction in the regulation of coagulation. We therefore examined the details of activation of bovine factor V by two purified snake venom proteolytic enzymes, factor V-activating protease from Russell's viper venom and a platelet-aggregating enzyme, thrombocytin, fromBothrops atrox venom. The reactions were followed by changes in factor V coagulant activity, immunoelectrophoresis, and electrophoresis of radiolabeled factor V in sodium dodecylsulfate under reducing conditions. When factor V (M r 330,000) was exposed to factor V-activating protease at an enzyme-to-substrate ratio of 1:35 at 37°, cleavage occurred in 1 min, with formation of an intermediate (M r 250,000) coincident with a nine-fold activity increase. By 2 min, additional cleavage occurred, with disappearance of the intermediate and formation of two final fragments (M r 150,000 and 100,000) but no further change in coagulant activity. The concentration of these components remained unchanged from 5 to 15 min. Immunoelectrophoresis against antiserum directed against factor V confirmed cleavage of the molecule. Incubation of factor V with thrombocytin at 37° for 1 min resulted in a four-fold increase of factor V activity, with the formation of an intermediate (M r 220,000). By 2 min, a 7.5-fold activation was found, with a decline in the concentration of the intermediate; the predominant species hasM r =130,000. At 5 min the intermediate disappeared and a second, final fragment ofM r of ~150,000 appeared without further change in coagulant activity. Immunoelectrophoresis again confirmed selective proteolysis. Thus, incubation of factor V-activating protease or thrombocytin with factor V results in different molecular alterations associated with an increase in the coagulant activity of this clotting factor.  相似文献   

2.
Snake venom proteases affecting hemostasis and thrombosis   总被引:24,自引:0,他引:24  
The structure and function of snake venom proteases are briefly reviewed by putting the focus on their effects on hemostasis and thrombosis and comparing with their mammalian counterparts. Up to date, more than 150 different proteases have been isolated and about one third of them structurally characterized. Those proteases are classified into serine proteases and metalloproteinases. A number of the serine proteases show fibrin(ogen)olytic (thrombin-like) activities, which are not susceptible to hirudin or heparin and perhaps to most endogenous serine protease inhibitors, and form abnormal fibrin clots. Some of them have kininogenase (kallikrein-like) activity releasing hypotensive bradykinin. A few venom serine proteases specifically activate coagulation factor V, protein C, plasminogen or platelets. The venom metalloproteinases, belonging to the metzincin family, generally show fibrin(ogen)olytic and extracellular matrix-degrading (hemorrhagic) activities. A few venom metalloproteinases show a unique substrate specificity toward coagulation factor X, platelet membrane receptors or von Willebrand factor. A number of the metalloproteinases have chimeric structures composed of several domains such as proteinase, disintegrin-like, Cys-rich and lectin-like domains. The disintegrin-like domain seems to facilitate the action of those metalloproteinases by interacting with platelet receptors. A more detailed analysis of snake venom proteases should find their usefulness for the medical and pharmacological applications in the field of thrombosis and hemostasis.  相似文献   

3.
Snakebites are a major neglected tropical disease responsible for as many as 95000 deaths every year worldwide. Viper venomserine proteases disrupt haemostasis of prey and victims by affecting various stages of the blood coagulation system. A betterunderstanding of their sequence, structure, function and phylogenetic relationships will improve the knowledge on thepathological conditions and aid in the development of novel therapeutics for treating snakebites. A large dataset for all availableviper venom serine proteases was developed and analysed to study various features of these enzymes. Despite the large number ofvenom serine protease sequences available, only a small proportion of these have been functionally characterised. Although, theyshare some of the common features such as a C-terminal extension, GWG motif and disulphide linkages, they vary widely betweeneach other in features such as isoelectric points, potential N-glycosylation sites and functional characteristics. Some of the serineproteases contain substitutions for one or more of the critical residues in catalytic triad or primary specificity pockets. Phylogeneticanalysis clustered all the sequences in three major groups. The sequences with substitutions in catalytic triad or specificity pocketclustered together in separate groups. Our study provides the most complete information on viper venom serine proteases to dateand improves the current knowledge on the sequence, structure, function and phylogenetic relationships of these enzymes. Thiscollective analysis of venom serine proteases will help in understanding the complexity of envenomation and potential therapeuticavenues.  相似文献   

4.
Bothrojaracin is a potent and specific alpha-thrombin inhibitor (Kd approximately 0.6 nM) isolated from Bothrops jararaca venom. It binds to both of thrombin's anion-binding exosites (1 and 2), thus inhibiting the ability of the enzyme to act upon several natural macromolecular substrates, such as fibrinogen, platelet receptor, protein C, and factor V. Additionally, bothrojaracin interacts with prothrombin (Kd approximately 30 nM), as previously determined by a solid-phase assay. However, there is no information concerning the effect of this interaction on prothrombin activation and whether the binding of bothrojaracin can occur in plasma. Here, we show that bothrojaracin specifically interacts with prothrombin in human plasma. It is an effective anticoagulant after activation of the intrinsic pathway of blood coagulation, and analysis of prothrombin conversion in plasma shows that bothrojaracin strongly reduces alpha-thrombin formation. To determine whether this effect is due exclusively to inhibition of feedback reactions involving the thrombin-induced activation of factors V and VIII, we analyzed the effect of bothrojaracin on the activation of purified prothrombin by Oxyuranus scutellatus venom. As with plasma, bothrojaracin greatly inhibited thrombin formation, suggesting a direct interference in the prothrombin activation by the enzyme found in this venom (scuterin, a prothrombin activator described as a factor Xa/factor Va-like complex). Altogether, we suggest that bothrojaracin exerts its anticoagulant effect in plasma by two distinct mechanisms: (1) it binds generated thrombin and inhibits exosite 1 dependent activities such as fibrinogen clotting and factor V activation, and (2) it interacts with prothrombin and decreases its proteolytic activation. Thus, bothrojaracin may be useful in the search for thrombin inhibitors that bind both the zymogen and the active enzyme.  相似文献   

5.
N-peptidyl-O-acyl hydroxylamines have proven to be effective and selective mechanism-based inhibitors of serine and cysteine proteases as demonstrated using enzymes with specificities for hydrophobic amino acids at the cleavage site. Here, we report for the first time the inhibition of proteases able to accommodate cationic amino acid side chains in their binding pockets using compounds of this inhibitor class. Trypsin and papain are inactivated by enkephalin-analogue diacyl hydroxylamines in a time-dependent and irreversible manner exhibiting second-order rate constants in the range of 100-1000 M-1.s-1. In contrast, human cerebrospinal fluid dynorphin-converting enzyme (hCSFDCE) is inhibited only moderately by these inhibitors. Mechanistic implications have been derived.  相似文献   

6.
Two venom proteases with fibrinogenolytic activity were isolated from the venom of Taiwan habu (Trimeresurus mucrosquamatus), one major crotalid snake species in Taiwan. The purified enzymes showed a strong beta-fibrinogenolytic activity, cleaving the beta-chain of fibrinogen molecules specifically. They also showed strong kallikrein-like activity in vitro, releasing bradykinin from kininogen. The purified enzymes did not coagulate human plasma, yet decreasing fibrinogen levels in plasma and prolonging bleeding without formation of fibrin clots, indicating that both proteases have specificities different from thrombin and the thrombin-like proteases of snake venom reported previously. They also exhibit amidase activity against N-benzoyl-Pro-Phe-Arg-p-nitroanilide, which is a specific synthetic substrate for kallikrein-like proteases. Their stability at high temperatures was examined and found to be more stable when compared with ancrod and thrombin. Intravenous injection of either protease was shown to lower blood pressure in experimental rats. Most noteworthy is the observation that the proteases can cleave angiotensin I and release bradykinin from plasma kininogen in vitro, which is a strong vasodilator and probably responsible for the in vivo hypotensive effect of these venom proteases.  相似文献   

7.
8.
Papain-like cysteine proteases are the most numerous family of the cysteine protease class. They are expressed throughout the animal and plant kingdoms as well as in viruses and bacteria. More recently, this protease family has drawn attention as a potential pharmaceutical drug target in diseases characterized by excessive extracellular matrix degradation such as in osteoporosis, arthritis, vascular diseases, and cancer. Moreover, papain-like cysteine proteases have been identified as critical components of the life cycle and invasive potential of various human and live stock pathogens as well as major allergens. Therefore, this protease class is rigorously studied and requires sufficient amounts of protease protein to analyze structure-activity relationships, their 3-D structures as well as to screen for and optimize potent and selective inhibitors. This review summarizes approaches to generate active papain-like cysteine proteases by heterologous expression in a variety of expression systems.  相似文献   

9.
E chrysanthemi, a phytopathogenic enterobacterium, secretes several enzymes into the medium such as pectinases cellulases and proteases. It also produces 3 distinct and antigenically related extracellular proteases. The proteases secretion pathway seems to be distinct from that of the other extracellular enzymes since pleiotropic mutants impaired in cellulase and pectinase secretion are unimpaired in protease secretion. E chrysanthemi proteases B and C secretion occurs without an N-terminal signal peptide and is dependent upon specific secretion functions which are encoded by genes adjacent to the protease structural genes. This secretion pathway might be analogous to the alpha-hemolysin secretion pathway in E coli. Protection against intracellular proteolytic activity is achieved by 2 distinct mechanisms: the proteases are synthesized as inactive precursors with an N-terminal extension of 15 aminoacids (protease B) and 17 aminoacids (protease C) absent in the mature active extracellular enzymes; an intracellular specific protease inhibitor is produced by some E chrysanthemi strains.  相似文献   

10.
Programmed cell death, or apoptosis, is a physiological cell suicide mechanism, which is triggered in the cells by different stimuli. It has been shown that proteases play a significant role both in the target cell killing by cytotoxic lymphocytes and in the TNF- or anti-Fas-induced cell death. The proteases involved in the early (induction) and late (cell self-destruction) stages of apoptosis are reviewed. It is suggested that the late stages are connected with the activation of a cascade of intracellular proteases, which leads to massive protein destruction. It is likely that the protein destruction is mainly designed for preventing autoimmune response to proteins released from dying cells.  相似文献   

11.
Api SI and Api SII are serine proteases of the honeybee venom containing allergenic determinants. Each protease consists of two structural modules: an N-terminal CUB (Api SI) or a clip domain (Api SII) and a C-terminal serine protease-like (SPL) domain. Both domains are connected with a linker peptide. The knowledge about the structure and function of Api SI and Api SII is limited mainly to their amino acid sequences. We constructed 3-D models of the two proteases using their amino acid sequences and crystallographic coordinates of related proteins. The models of the SPL domains were built using the structure of the prophenoloxidase-activating factor (PPAF)-II as a template. For modelling of the Api SI CUB domain the coordinates of porcine spermadhesin PSP-I were used. The models revealed the catalytic and substrate-binding sites and the negatively charged residue responsible for the trypsin-like activity. IgE-binding and antigenic sites in the two allergens were predicted using the models and programs based on the structure of known epitopes. Api SI and Api SII show structural and functional similarity to the members of the PPAF-II family. Most probably, they are part of the defence system of Apis mellifera.  相似文献   

12.
Inhibition of serine proteases by peptidyl fluoromethyl ketones   总被引:2,自引:0,他引:2  
B Imperiali  R H Abeles 《Biochemistry》1986,25(13):3760-3767
We have synthesized peptidyl fluoromethyl ketones that are specific inhibitors of the serine proteases alpha-chymotrypsin and porcine pancreatic elastase. By analogy with the corresponding aldehydes it is assumed that the fluoromethyl ketones react with the gamma-OH group of the active site serine to form a stable hemiacetal [Lowe, G., & Nurse, D. (1977) J. Chem. Soc., Chem. Commun., 815; Chen, R., Gorenstein, D.G., Kennedy, W.P., Lowe, G., Nurse, D., & Schultz, R.M. (1979) Biochemistry 18, 921; Shah, D.O., Lai, K., & Gorenstein, D.G. (1984) J. Am. Chem. Soc. 106, 4272]. 19F NMR studies of the chymotrypsin-bound trifluoromethyl ketone inhibitors Ac-Leu-ambo-Phe-CF3 and Ac-ambo-Phe-CF3 clearly indicate that the carbonyl carbon is tetrahedral at the active site of the enzyme. The inhibitor is bound as either the stable hydrate or the hemiacetal, involving the active site serine. The effect of varying the number of amino acid residues in the peptidyl portion of the inhibitor and the number of fluorines in the fluoromethyl ketone moiety is examined. In the series of trifluoromethyl ketone elastase inhibitors, the lowering of Ki concomitant with the change from a dipeptide analogue to a tetrapeptide analogue (Ac-Pro-ambo-Ala-CF3, Ki = 3 X 10(-3) M; Ac-Ala-Ala-Pro-ambo-Ala-CF3, Ki = 0.34 X 10(-6) M) correlates well with the variation in V/K for hydrolysis of the corresponding amide substrates. This trend is indicative of the inhibitors acting as transition-state analogues [Bartlett, P.A., & Marlowe, C.K. (1983) Biochemistry 22, 4618; Thompson, R.C. (1973) Biochemistry 12, 47].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Secretion, processing and activation of bacterial extracellular proteases   总被引:31,自引:3,他引:31  
Many different bacteria secrete proteases into the culture medium. Extracellular proteases produced by Gram-positive bacteria are secreted by a signal-peptide-dependent pathway and have a propeptide located between the signal peptide and the mature protein. Many extracellular proteases synthesized by Gram-negative bacteria are also produced as precursors with a signal peptide. However, at least two species of Gram-negative bacteria secrete one or more proteases via a novel signal-peptide-independent route. Most proteases secreted by Gram-negative bacteria also have a propeptide whose length and location vary according to the protease. Specific features of protease secretion pathways and the mechanisms of protease activation are discussed with particular reference to some of the best-characterized extracellular proteases produced by Gram-positive and Gram-negative bacteria.  相似文献   

14.
Crotalus atrox venom contains agents that render human fibrinogen and plasma incoagulable by thrombin. To elucidate the mechanism of alteration of fibrinogen clotting function by the venom, four immunochemically different proteases, I, II, III, and IV, were purified from the venom by anion-exchange chromatography and column gel filtration. All four proteases had anticoagulant activity rendering purified fibrinogen incoagulable. Proteases I and IV do not affect fibrinogen in plasma but in purified fibrinogen cleave the A alpha chain first and then the B beta and gamma chains. Both enzymes are metalloproteases containing a single polypeptide chain with 1 mol of zinc, are inhibited by (ethylenedinitrilo)tetraacetate and human alpha 2-macroglobulin, and have an optimal temperature of 37 degrees C and an optimal pH of 7. Protease I has a molecular weight (Mr) of 20 000 and is the most cationic. Protease IV has an Mr of 46 000 and is the most anionic glycoprotein with one free sulfhydryl group. Proteases II and III degrade both purified fibrinogen and fibrinogen in plasma, cleaving only the B beta chain and leaving the A alpha and gamma chains intact. Both enzymes are alkaline serine proteases, cleave chromogenic substrates at the COOH terminal of arginine or lysine, are inhibited by diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride, and have an optimal temperature of 50-65 degrees C. Protease II is a single polypeptide chain glycoprotein with an Mr of 31 000. Protease III is a two polypeptide chain protein with an Mr of 24 000, each of the two chains having an Mr of 13 000; its activity is not affected by major protease inhibitors of human plasma. Proteases II and III are enzymes with unique and limited substrate specificity by cleaving only the B beta chain, releasing a peptide of Mr 5000 and generating a fibrinogen derivative of Mr 325 000, with intact A alpha and gamma chains and poor coagulability. Since the two enzymes are active in human plasma and serum, it is postulated that proteases II and III can mediate anticoagulant effects in vivo after envenomation.  相似文献   

15.
The N-terminal propeptide domains of several cathepsin L-like cysteine proteases have been shown to possess potent inhibitory activity. Here we report the first kinetic characterisation of the inhibition properties of the cathepsin V propeptide (CatV PP). Using a facile recombinant approach we demonstrate expression, purification and evaluation of the CatV PP. This propeptide was found to behave as a tight-binding inhibitor against CatV (K (i) 10.2 nm). It also functions as an inhibitor against other members of the CatL-like subclass (CatL, 9.8 nm; CatS, 10.7 nm; and CatK, 149 nm) and had no discernible effects upon the more distantly related CatB.  相似文献   

16.
Jerdonobin and jerdofibrase are two serine proteases purified from the venom of Trimeresurus jerdonii. The Michaelis constant K(m) and the catalytic rate constant K(cat) of jerdonobin or jerdofibrase on three chromogenic substrates, H-D-Pro-Phe-Arg-pNA (S2302), H-D-Phe-pipecolyl-Arg-pNA (S2238), and H-D-Val-Leu-Lys-pNA (S2251) were obtained from lineweaver-Burk plots. Jerdofibrase could hydrolyze all three substrates, but jerdonobin had no detectable activity on S2251, suggesting a relatively broader substrate specificity for jerdofibrase than jerdonobin. By SDS-PAGE, jerdofibrase preferentially degraded Bbeta-chain of fibrinogen. It also degraded Aalpha-chain of fibrinogen with relatively slow activity, but did not act on the gamma-chain. In contrast, jerdonobin did not degrade fibrinogen within 12 h. Fibrinopeptides liberation test, identified by HPLC, showed jerdonobin released fibrinopeptide A and a small amount of fibrinopeptide B. Unlike jerdonobin, jerdofibrase mainly released fibrinopeptide B. These results indicate that the two enzymes differ in their ability to hydrolyze chromogenic substrates and in their actions on fibrinogen.  相似文献   

17.
Cathepsin C is a cysteine protease required for the activation of several pro-inflammatory serine proteases and, as such, is of interest as a therapeutic target. In cathepsin C-deficient mice and humans, the N-terminal processing and activation of neutrophil elastase, cathepsin G, and proteinase-3 is abolished and is accompanied by a reduction of protein levels. Pharmacologically, the consequence of cathepsin C inhibition on the activation of these serine proteases has not been described, due to the lack of stable and non-toxic inhibitors and the absence of appropriate experimental cell systems. Using novel reversible peptide nitrile inhibitors of cathepsin C, and cell-based assays with U937 and EcoM-G cells, we determined the effects of pharmacological inhibition of cathepsin C on serine protease activity. We show that indirect and complete inhibition of neutrophil elastase, cathepsin G, and proteinase-3 is achievable in intact cells with selective and non-cytotoxic cathepsin C inhibitors, at concentrations approximately 10-fold higher than those required to inhibit purified cathepsin C. The concentration of inhibitor needed to block processing of these three serine proteases was similar, regardless of the cell system used. Importantly, cathepsin C inhibition must be sustained to maintain serine protease inhibition, because removal of the reversible inhibitors resulted in the activation of pro-enzymes in intact cells. These findings demonstrate that near complete inhibition of multiple serine proteases can be achieved with cathepsin C inhibitors and that cathepsin C inhibition represents a viable but challenging approach for the treatment of neutrophil-based inflammatory diseases.  相似文献   

18.

Background

Arginine-specific (RgpB and RgpA) and lysine-specific (Kgp) gingipains are secretory cysteine proteinases of Porphyromonas gingivalis that act as important virulence factors for the organism. They are translated as zymogens with both N- and C-terminal extensions, which are proteolytically cleaved during secretion. In this report, we describe and characterize inhibition of the gingipains by their N-terminal prodomains to maintain latency during their export through the cellular compartments.

Methods

Recombinant forms of various prodomains (PD) were analyzed for their interaction with mature gingipains. The kinetics of their inhibition of proteolytic activity along with the formation of stable inhibitory complexes with native gingipains was studied by gel filtration, native PAGE and substrate hydrolysis.

Results

PDRgpB and PDRgpA formed tight complexes with arginine-specific gingipains (Ki in the range from 6.2 nM to 0.85 nM). In contrast, PDKgp showed no inhibitory activity. A conserved Arg-102 residue in PDRgpB and PDRgpA was recognized as the P1 residue. Mutation of Arg-102 to Lys reduced inhibitory potency of PDRgpB by one order of magnitude while its substitutions with Ala, Gln or Gly totally abolished the PD inhibitory activity. Covalent modification of the catalytic cysteine with tosyl-l-Lys-chloromethylketone (TLCK) or H-D-Phe-Arg-chloromethylketone did not affect formation of the stable complex.

Conclusion

Latency of arginine-specific progingipains is efficiently exerted by N-terminal prodomains thus protecting the periplasm from potentially damaging effect of prematurely activated gingipains.

General significance

Blocking progingipain activation may offer an attractive strategy to attenuate P. gingivalis pathogenicity.  相似文献   

19.
1.
1. Potassium cyanide, cysteine hydrochloride, mercuric chloride, sodium sulfide, and hydrogen peroxide are without effect on pectinesterase (PE).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号