首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex microenvironment that surrounds hematopoietic stem cells (HSCs) in the bone marrow niche involves different coordinated signaling pathways. The stem cells establish permanent interactions with distinct cell types such as mesenchymal stromal cells, osteoblasts, osteoclasts or endothelial cells and with secreted regulators such as growth factors, cytokines, chemokines and their receptors. These interactions are mediated through adhesion to extracellular matrix compounds also. All these signaling pathways are important for stem cell fates such as self-renewal, proliferation or differentiation, homing and mobilization, as well as for remodeling of the niche. Among these complex molecular cues, this review focuses on heparan sulfate (HS) structures and functions and on the role of enzymes involved in their biosynthesis and turnover. HS associated to core protein, constitute the superfamily of heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix of all tissues. The key regulatory effects of major medullar HSPGs are described, focusing on their roles in the interactions between hematopoietic stem cells and their endosteal niche, and on their ability to interact with Heparin Binding Proteins (HBPs). Finally, according to the relevance of HS moieties effects on this complex medullar niche, we describe recent data that identify HS mimetics or sulfated HS signatures as new glycanic tools and targets, respectively, for hematopoietic and mesenchymal stem cell based therapeutic applications.  相似文献   

2.
Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders.  相似文献   

3.
Stem cell division is tightly controlled via secreted signaling factors and cell adhesion molecules provided from local niche structures. Molecular mechanisms by which each niche component regulates stem cell behaviors remain to be elucidated. Here we show that heparan sulfate (HS), a class of glycosaminoglycan chains, regulates the number and asymmetric division of germline stem cells (GSCs) in the Drosophila testis. We found that GSC number is sensitive to the levels of 6-O sulfate groups on HS. Loss of 6-O sulfation also disrupted normal positioning of centrosomes, a process required for asymmetric division of GSCs. Blocking HS sulfation specifically in the niche, termed the hub, led to increased GSC numbers and mispositioning of centrosomes. The same treatment also perturbed the enrichment of Apc2, a component of the centrosome-anchoring machinery, at the hub–GSC interface. This perturbation of the centrosome-anchoring process ultimately led to an increase in the rate of spindle misorientation and symmetric GSC division. This study shows that specific HS modifications provide a novel regulatory mechanism for stem cell asymmetric division. The results also suggest that HS-mediated niche signaling acts upstream of GSC division orientation control.  相似文献   

4.
Stem cells are maintained in vivo by short-range signaling systems in specialized microenvironments called niches, but the molecular mechanisms controlling the physical space of the stem cell niche are poorly understood. In this study, we report that heparan sulfate (HS) proteoglycans (HSPGs) are essential regulators of the germline stem cell (GSC) niches in the Drosophila melanogaster gonads. GSCs were lost in both male and female gonads of mutants deficient for HS biosynthesis. dally, a Drosophila glypican, is expressed in the female GSC niche cells and is responsible for maintaining the GSC niche. Ectopic expression of dally in the ovary expanded the niche area, showing that dally is required for restriction of the GSC niche space. Interestingly, the other glypican, dally-like, plays a major role in regulating male GSC niche maintenance. We propose that HSPGs define the physical space of the niche by serving as trans coreceptors, mediating short-range signaling by secreted factors.  相似文献   

5.
Background:Parathyroid hormone (PTH) is a calcium homeostasis regulator and can affect bone marrow niche. PTH leads to the bone marrow stem cell niche expansion as well as the induction of stem cell mobilization from the bone marrow into peripheral blood. In this study, we evaluated the association between pre- transplantation serum PTH levels and the number of circulating CD34+ cells along with the platelets/white blood cells (Plt/WBC) engraftment in patients who underwent autologous Hematopoietic Stem Cell Transplantation.Methods:Subjects for the study were 100 patients who received autologous hematopoietic stem cell transplantation (auto-HSCT), retrospectively. Serum levels of PTH, calcium, phosphorus, and alkaline phosphatase were measured before mobilization. Their impacts were measured on the number of mobilized CD34+ hematopoietic stem cells, and Plt/WBC engraftment.Results:High levels of serum PTH (> 63.10 pg/mL) was significantly associated with higher number of CD34+ cells in peripheral blood after granulocyte- colony stimulating factor (G-CSF)-induced mobilization (p= 0.079*). Serum calcium at low levels were associated with higher number of circulating CD34+ cells post mobilization. Pre- transplantation serum levels of phosphorus and alkaline phosphatase on CD34+ numbers were not statistically significant. Serum Plt/WBC engraftment was not improved in presence of high levels of serum PTH.Conclusion:We suggested that serum PTH levels before transplantation could be influential in raising the number of circulating CD34+ hematopoietic stem cell after mobilization.Key Words: Auto-HSCT, CD34+ Cell, Pre- transplant PTH  相似文献   

6.
7.
Objectives: Fractones are extracellular matrix structures that form a niche for neural stem cells and their immediate progeny in the subventricular zone of the lateral ventricle (SVZa), the primary neurogenic zone in the adult brain. We have previously shown that heparan sulphates (HS) associated with fractones bind fibroblast growth factor‐2 (FGF‐2), a powerful mitotic growth factor in the SVZa. Here, our objective was to determine whether the binding of FGF‐2 to fractone‐HS is implicated in the mechanism leading to cell proliferation in the SVZa. Materials and methods: Heparitinase‐1 was intracerebroventricularly injected with FGF‐2 to N‐desulfate HS proteoglycans and determine whether the loss of HS and of FGF‐2 binding to fractones modifies FGF‐2 effect on cell proliferation. We also examined in vivo the binding of Alexa‐Fluor‐FGF‐2 in relationship with the location of HS immunoreactivity in the SVZa. Results: Heparatinase‐1 drastically reduced the stimulatory effect of FGF‐2 on cell proliferation in the SVZa. Alexa‐Fluor‐FGF‐2 binding was strictly co‐localized with HS immunoreactivity in fractones and adjacent vascular basement membranes in the SVZa. Conclusions: Our results demonstrate that FGF‐2 requires HS to stimulate cell proliferation in the SVZa and suggest that HS associated with fractones and vascular basement membranes are responsible for activating FGF‐2. Therefore, fractones and vascular basement membranes may function as a HS niche to drive cell proliferation in the adult neurogenic zone.  相似文献   

8.
Zhao R  Xuan Y  Li X  Xi R 《Aging cell》2008,7(3):344-354
Adult stem cells are important in replenishing aged cells to maintain tissue homeostasis. Aging in turn may exert profound effects on stem cell's regenerative potential, but to date the mechanisms of such stem cell aging are poorly understood, and it is not clear to what extent stem cell aging contributes to tissue or organ aging. Here we show in female Drosophila that germline stem cell (GSC) division rate progressively declines with age, which is accompanied by reduced decapentaplegic (dpp) niche signaling pathway activation within GSCs. Egg production also rapidly declines with age, which is accompanied by both decreased stem cell division and increased incidence of cell death of developing eggs, especially in the oldest females. Genetically increasing dpp expression delays GSC activity decline and transiently increases egg production. We conclude that age-related decline of reproduction is caused by both decreased GSC activity and increased incidence of cell death during oogenesis, while decreased GSC activity is attributed to declined signaling from the regulatory niche. We suggest that niche functional decay may be an important mechanism for stem cell aging and system failure.  相似文献   

9.
10.
11.
Transient lymphopenia is a hallmark of measles virus (MV)-induced immunosuppression. To address to what extent replenishment of the peripheral lymphocyte compartment from bone marrow (BM) progenitor/stem cells might be affected, we analyzed the interaction of wild-type MV with hematopoietic stem and progenitor cells (HS/PCs) and stroma cells in vitro. Infection of human CD34(+) HS/PCs or stroma cells with wild-type MV is highly inefficient yet noncytolytic. It occurs independently of CD150 in stroma cells but also in HS/PCs, where infection is established in CD34(+) CD150(-) and CD34(+) CD150(+) (in humans representing HS/PC oligopotent precursors) subsets. Stroma cells and HS/PCs can mutually transmit MV and may thereby create a possible niche for continuous viral exchange in the BM. Infected lymphocytes homing to this compartment may serve as sources for HS/PC or stroma cell infection, as reflected by highly efficient transmission of MV from both populations in cocultures with MV-infected B or T cells. Though MV exposure does not detectably affect the viability, expansion, and colony-forming activity of either CD150(+) or CD150(-) HS/PCs in vitro, it efficiently interferes with short- but not long-term hematopoietic reconstitution in NOD/SCID mice. Altogether, these findings support the hypothesis that MV accession of the BM compartment by infected lymphocytes may contribute to peripheral blood mononuclear cell lymphopenia at the level of BM suppression.  相似文献   

12.
Adult epithelial stem cells are thought to reside in specific niches, where they are maintained by adhesion to stromal cells and by intercellular signals. In niches that harbor multiple adjacent stem cells, such as those maintaining Drosophila germ cells, lost stem cells are replaced by division of neighboring stem cells or reversion of transit cells. We have characterized the Drosophila follicle stem cell (FSC) niche as a model of the epithelial niche to learn whether nonneighboring cells can also generate stem cell replacements. Exactly two stroma-free FSC niches holding single FSCs are located in fixed locations on opposite edges of the Drosophila ovariole. FSC daughters regularly migrate across the width of the ovariole to the other niche before proliferating and contributing to the follicle cell monolayer. Crossmigrating FSC daughters compete with the resident FSC for niche occupancy and are the source of replacement FSCs. The ability of stem cell daughters to target a distant niche and displace its resident stem cell suggests that precancerous mutations might spread from niche to niche within stem cell-based tissues.  相似文献   

13.
Neutral competition, an emerging feature of stem cell homeostasis, posits that individual stem cells can be lost and replaced by their neighbors stochastically, resulting in chance dominance of a clone at the niche. A single stem cell with an oncogenic mutation could bias this process and clonally spread the mutation throughout the stem cell pool. The Drosophila testis provides an ideal system for testing this model. The niche supports two stem cell populations that compete for niche occupancy. Here, we show that cyst stem cells (CySCs) conform to the paradigm of neutral competition and that clonal deregulation of either the Hedgehog (Hh) or Hippo (Hpo) pathway allows a single CySC to colonize the niche. We find that the driving force behind such behavior is accelerated proliferation. Our results demonstrate that a single stem cell colonizes its niche through oncogenic mutation by co‐opting an underlying homeostatic process.  相似文献   

14.
The establishment of in vitro culture systems to expand stem cells and to elucidate the niche/stem cell interaction is among the most sought-after culture systems of our time. To further investigate niche/stem cell interactions, we evaluated in vitro cultures of isolated intact male germline-niche complexes (i.e., apical complexes), complexes with empty niche spaces, and completely empty niches (i.e., isolated apical cells) from the testes of Locusta migratoria and the interaction of these complexes with isolated germline stem cells, spermatogonia (of transit-amplifying stages), cyst progenitor cells, cyst progenitor cell-like cells, cyst cells, and follicle envelope cells. The structural characteristics of these cell types allow the identification of the different cell types in primary cultures, which we studied in detail by light and electron microscopy. In intact testes germline stem cells strongly adhere to their niche (the apical cell), but emigrate from their niche and form filopodia if the apical complex is put into culture with "standard media." The lively movements of the long filopodia of isolated germline stem cells and spermatogonia may be indicative of their search for specific signals to home to their niche. All other incubated cell types (except for follicle envelope cells) expressed rhizopodia and lobopodia. Nevertheless isolated germline stem cells in culture do not migrate to empty niche spaces of nearby apical cells. This could indicate that apical cells lose their germline stem cell attracting ability in vitro, although apical cells devoid of germline stem cells either by emigration of germline stem cells or by mechanical removal of germline stem cells are capable of surviving in vitro up to 56 days, forming many small lobopodia and performing amoeboid movements. We hypothesize that the breakdown of the apical complex in vitro with standard media interrupts the signaling between the germline stem cells and the niche (and conceivably the cyst progenitor cells) which directs the typical behavior of the male regenerative center. Previously we demonstrated the necessity of the apical cell for the survival of the germline stem cell. From these studies we are now able to culture viable isolated germline stem cells and all cells of its niche complex, although DNA synthesis stops after Day 1 in culture. This enables us to examine the effects of supplements to our standard medium on the interaction of the germline stem cell with its niche, the apical cell. The supplements we evaluated included conditioned medium, tissues, organs, and hemolymph of male locusts, insect hormones, mammalian growth factors, Ca(2+) ion, and a Ca(2+) ionophore. Although biological effects on the germline stem cell and apical cell could be detected with the additives, none of these supplements restored the in vivo behavior of the incubated cell types. We conclude that the strong adhesion between germline stem cells and apical cells in vivo is actively maintained by peripheral factors that reach the apical complex via hemolymph, since a hemolymph-testis barrier does not exist. The in vitro culture model introduced in this study provides a platform to scan for possible regulatory factors that play a key role in a feedback loop that keeps germline stem cell division and sperm disposal in equilibrium.  相似文献   

15.
The stem cell niche is a unique tissue microenvironment that regulates the self-renewal and differentiation of stem cells. Although several stromal cells and molecular pathways have been identified, the microenvironment of the stem cell niche remains largely unclear. Recent evidence suggests that stem cells are localized in areas with low oxygen. We have hypothesized that hypoxia maintains the undifferentiated phenotype of stem/precursor cells. In this report, we demonstrate that hypoxia reversibly arrests preadipocytes in an undifferentiated state. Consistent with this observation, hypoxia maintains the expression of pref-1, a key stem/precursor cell gene that negatively regulates adipogenic differentiation. We further demonstrate that the hypoxia-inducible factor-1 (HIF-1) constitutes an important mechanism for the inhibition of adipogenic differentiation by hypoxia. Our findings suggest that hypoxia in the stem cell niche is critical for the maintenance of the undifferentiated stem or precursor cell phenotype.  相似文献   

16.
17.
Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs) are attached to niche component cells (i.e., the hub) via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.  相似文献   

18.
Adult stem cells reside in specialized microenvironments, or niches, that are essential for their function in vivo. Stem cells are physically attached to the niche, which provides secreted factors that promote their self-renewal and proliferation. Despite intense research on the role of the niche in regulating stem cell function, much less is known about how the niche itself is controlled. We previously showed that insulin signals directly stimulate germline stem cell (GSC) division and indirectly promote GSC maintenance via the niche in Drosophila. Insulin-like peptides are required for maintenance of cap cells (a major component of the niche) via modulation of Notch signaling, and they also control attachment of GSCs to cap cells and E-cadherin levels at the cap cell–GSC junction. Here, we further dissect the molecular and cellular mechanisms underlying these processes. We show that insulin and Notch ligands directly stimulate cap cells to maintain their numbers and indirectly promote GSC maintenance. We also report that insulin signaling, via phosphoinositide 3-kinase and FOXO, intrinsically controls the competence of cap cells to respond to Notch ligands and thereby be maintained. Contrary to a previous report, we also find that Notch ligands originated in GSCs are not required either for Notch activation in the GSC niche, or for cap cell or GSC maintenance. Instead, the niche itself produces ligands that activate Notch signaling within cap cells, promoting stability of the GSC niche. Finally, insulin signals control cap cell–GSC attachment independently of their role in Notch signaling. These results are potentially relevant to many systems in which Notch signaling modulates stem cells and demonstrate that complex interactions between local and systemic signals are required for proper stem cell niche function.  相似文献   

19.
Boyle M  Wong C  Rocha M  Jones DL 《Cell Stem Cell》2007,1(4):470-478
Aging is characterized by compromised organ and tissue function. A decrease in stem cell number and/or activity could lead to the aging-related decline in tissue homeostasis. We have analyzed how the process of aging affects germ line stem cell (GSC) behavior in the Drosophila testis and report that significant changes within the stem cell microenvironment, or niche, occur that contribute to a decline in stem cell number over time. Specifically, somatic niche cells in testes from older males display reduced expression of the cell adhesion molecule DE-cadherin and a key self-renewal signal unpaired (upd). Loss of upd correlates with an overall decrease in stem cells residing within the niche. Conversely, forced expression of upd within niche cells maintains GSCs in older males. Therefore, our data indicate that age-related changes within stem cell niches may be a significant contributing factor to reduced tissue homeostasis and regeneration in older individuals.  相似文献   

20.
Location, location, location: the cancer stem cell niche   总被引:3,自引:0,他引:3  
Sneddon JB  Werb Z 《Cell Stem Cell》2007,1(6):607-611
The existence of a stem cell niche, or physiological microenvironment, consisting of specialized cells that directly and indirectly participate in stem cell regulation has been verified for mammalian adult stem cells in the intestinal, neural, epidermal, and hematopoietic systems. In light of these findings, it has been proposed that a "cancer stem cell niche" also exists and that interactions with this tumor niche may specify a self-renewing population of tumor cells. We discuss emerging data that support the idea of a veritable cancer stem cell niche and propose several models for the relationship between cancer cells and their niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号