首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substrates homoprotocatechuate (HPCA) and O(2) bind to the Fe(II) of homoprotocatechuate 2,3-dioxygenase (FeHPCD) in adjacent coordination sites. Transfer of an electron(s) from HPCA to O(2) via the iron is proposed to activate the substrates for reaction with each other to initiate aromatic ring cleavage. Here, rapid-freeze-quench methods are used to trap and spectroscopically characterize intermediates in the reactions of the HPCA complexes of FeHPCD and the variant His200Asn (FeHPCD?HPCA and H200N?HPCA, respectively) with O(2). A blue intermediate forms within 20 ms of mixing of O(2) with H200N?HPCA (H200N(Int1)(HPCA)). Parallel mode electron paramagnetic resonance and Mo?ssbauer spectroscopies show that this intermediate contains high-spin Fe(III) (S = 5/2) antiferromagnetically coupled to a radical (S(R) = 1/2) to yield an S = 2 state. Together, optical and Mo?ssbauer spectra of the intermediate support assignment of the radical as an HPCA semiquinone, implying that oxygen is bound as a (hydro)peroxo ligand. H200N(Int1)(HPCA) decays over the next 2 s, possibly through an Fe(II) intermediate (H200N(Int2)(HPCA)), to yield the product and the resting Fe(II) enzyme. Reaction of FeHPCD?HPCA with O(2) results in rapid formation of a colorless Fe(II) intermediate (FeHPCD(Int1)(HPCA)). This species decays within 1 s to yield the product and the resting enzyme. The absence of a chromophore from a semiquinone or evidence of a spin-coupled species in FeHPCD(Int1)(HPCA) suggests it is an intermediate occurring after O(2) activation and attack. The similar Mo?ssbauer parameters for FeHPCD(Int1)(HPCA) and H200N(Int2)(HPCA) suggest these are similar intermediates. The results show that transfer of an electron from the substrate to the O(2) via the iron does occur, leading to aromatic ring cleavage.  相似文献   

2.
The proximal ligand of thiolate-coordinated heme proteins is crucial for the activation of the oxygen molecule and hydroxylation of substrates. In nitric oxide synthases (NOSs), the heme axial cysteine ligand forms a hydrogen bond to the side chain indole nitrogen of a tryptophan residue. Resonance Raman spectroscopy was used to probe W56F and W56Y variants of the NOS of Staphylococcus aureus (saNOS) and the analogous W180 variants of the endothelial NOS oxygenase domain (eNOSox). We show that the variants displayed lower νFe-NO and νFe-CO frequencies indicating that these mutations increased the electron density on the axial cysteine in their FeIIINO and FeIICO complexes. We also show by UV-visible spectroscopy that the FeIICO complexes of the variants displayed a red-shifted Soret optical transition in addition to the lower νFe-CO thus establishing that these properties are sensitive indicators of the modulation of the basicity of the axial cysteine. We infer, based on its spectroscopic properties, that ferrous eNOSox W180Y saturated with l-arginine and tetrahydrobiopterin forms a tyrosine-cysteine hydrogen bond when bound to CO. Evidence for such a hydrogen bond was not obtained for the FeIIINO protein nor for the analogous saNOS variant. These mutations reveal interesting differences in the response of NOS isotypes to analogous mutations at conserved residues and clearly show that the heme-Fe to cysteine σ bond is modulated by the Cys-Trp hydrogen bond in NOSs. These studies serve as a basis to gain information on the role played by this hydrogen bond in oxygen activation in this class of enzymes.  相似文献   

3.
Nicotianamine (NA) occurs in all plants and chelates metal cations, including FeII, but reportedly not FeIII. However, a comparison of the FeII and ZnII affinity constants of NA and various FeIII-chelating aminocarboxylates suggested that NA should chelate FeIII. High-voltage electrophoresis of the FeNA complex formed in the presence of FeIII showed that the complex had a net charge of 0, consistent with the hexadentate chelation of FeIII. Measurement of the affinity constant for FeIII yielded a value of 1020.6, which is greater than that for the association of NA with FeII (1012.8). However, capillary electrophoresis showed that in the presence of FeII and FeIII, NA preferentially chelates FeII, indicating that the FeIINA complex is kinetically stable under aerobic conditions. Furthermore, Fe complexes of NA are relatively poor Fenton reagents, as measured by their ability to mediate H2O2-dependent oxidation of deoxyribose. This suggests that NA will have an important role in scavenging Fe and protecting the cell from oxidative damage. The pH dependence of metal ion chelation by NA and a typical phytosiderophore, 2′-deoxymugineic acid, indicated that although both have the ability to chelate Fe, when both are present, 2′-deoxymugineic acid dominates the chelation process at acidic pH values, whereas NA dominates at alkaline pH values. The consequences for the role of NA in the long-distance transport of metals in the xylem and phloem are discussed.  相似文献   

4.
L-amino acid oxidase (LAAO) has important biological roles in many organisms, thus attracting great attention from researchers to establish its detection methods. In this study, a new quantitative in-gel determination of LAAO activity based on ferric-xylenol orange (FeIIIXO) formation was established. This method showed that due to the conversion of FeII to FeIII by H2O2 and subsequent formation of FeIIIXO complex halo in agar medium, the logarithm of H2O2 concentration from 5 to 160 µM was linearly correlated to the diameter of purplish red FeIIIXO halo. By extracting the LAAO-generated H2O2 concentration, the LAAO activity can be quantitatively determined. This FeIIIXO agar assay is highly sensitive to detect H2O2 down to micromolar range. More importantly, it is easy to handle, cheap, reproducible, convenient and accurate. Coupled with SDS-PAGE, it can directly be used to determine the number and approximate molecular weight of LAAO in one assay. All these features make this in-gel FeIIIXO assay useful and convenient as a general procedure for following enzyme purification, assaying fractions from a column, or observing changes in activity resulting from enzyme modifications, hence endowing this method with broad applications.  相似文献   

5.
A mononuclear cobalt(III)-peroxo complex bearing a macrocyclic tetradentate N4 ligand, [CoIII(TMC)(O2)]+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was generated in the reaction of [CoII(TMC)]2+ and H2O2 in the presence of triethylamine in CH3CN. The reactivity of the cobalt(III)-peroxo complex was investigated in aldehyde deformylation with various aldehydes and compared with that of iron(III)- and manganese(III)-peroxo complexes, such as [FeIII(TMC)(O2)]+ and [MnIII(TMC)(O2)]+. In this reactivity comparison, the reactivities of metal-peroxo species were found to be in the order of [MnIII(TMC)(O2)]+ > [CoIII(TMC)(O2)]+ > [FeIII(TMC)(O2)]+. A positive Hammett ρ value of 1.8, obtained in the reactions of [CoIII(TMC)(O2)]+ and para-substituted benzaldehydes, demonstrates that the aldehyde deformylation by the cobalt(III)-peroxo species occurs via a nucleophilic reaction.  相似文献   

6.
Three new chiral ligands bearing an O,O′,N donor set (OmethoxyOhydroxyNpyridine) were synthesised and coordinated to FeIII, FeII, NiII, CuII and ZnII to yield complexes with the general formula [M(OON)Clx]y. While the pyridine N and the hydroxy O atoms coordinate strongly to all applied metal ions, the methoxy donor seems not to be involved in coordination, although some evidence for a weak interaction between OMe and the ZnII were found in NMR spectra. In the bidentate O′,N coordination mode the new ligands exhibit several coordination geometries as analysed in the solid compounds by XRD, EXAFS and EPR and in solution by UV-Vis absorption, cyclic voltammetry, EXAFS, EPR or NMR spectroscopy.  相似文献   

7.
The asymmetrically coordinated complex [{L(Ph2acac)FeIII}(μ-O){FeIII(Cl4-cat)L}](BPh4)·1.5toluene has been synthesized and structurally characterized (Ph2acac=1,3-diphenylpropane-1,3-dionate, Cl4-cat2–=tetrachlorocatecholate, L=1,4,7-trimethyl-1,4,7-triazacyclononane). This species can be electrochemically oxidized and reduced by one electron, respectively, yielding two species which both have an S=1/2 ground state. It is shown that the oxidation is ligand-centered, affording a coordinated semiquinonate(1–) ligand with S=1/2 which is antiferromagnetically coupled to a high-spin FeIII ion (S=5/2) yielding an S=2 state which, in turn, is antiferromagnetically coupled (through the oxo bridge) to the second high-spin FeIII ion (S=5/2) yielding the observed S=1/2 ground state. In contrast, the reduction is metal-centered generating a mixed-valent species with an [FeIII-O-FeII]3+ core; intramolecular antiferromagnetic coupling again produces an S=1/2 ground state. The symmetrical complex [{LFeIII(Ph2acac)}2(μ-O)](ClO4)2 has also been synthesized, as have the mononuclear species [LFeII(Ph2acac)Cl] and [LFeIII(aacac)Cl](ClO4)·1 mesitylene [aacac=3-(9-anthryl)acetylacetonate(1–)], all of which have been characterized by X-ray crystallography. The magnetism, the Mössbauer-, EPR-, and UV-VIS-spectra and the electrochemistry of complexes are reported.  相似文献   

8.
Metal-oxygen bonding complexes (M = MgII, MnII, NiII, MoVI, WVI, PdII, SbIII, BiIII, FeIII, TiIV, KI, BaII, ZrIV and HfIV) with a hinokitiol (Hhino; 2-hydroxy-4-isopropylcyclohepta-2,4,6-trienone or β-thujaplicin) ligand, which has two unequivalent oxygen donor atoms, were synthesized and characterized by elemental analysis, TG/DTA, FT-IR and solution (1H and 13C) NMR spectroscopy. Single-crystal X-ray structure analysis revealed various molecular structures for the complexes, which were classified into several families of family, i.e. type A [MII(hino)2(L)]2 (M = MgII, MnII, NiII; L = EtOH or MeOH), with a dimeric structure consisting of one bridging hino anion, one chelating hino anion and one alcohol or water molecule, type B, with the octahedral, cis-dioxo, bis-chelate complexes cis-[MVIO2(hino)2] (M = MoVI, WVI), type C, with square planar complex [MII(hino)2] (M = PdII), type D, with tris-chelate, 7-coordinate complexes with one inert electron pair [MIII(hino)3] (M = SbIII, BiIII), type D′, with the bis-chelate, pseudo-6-coordinate complexes with one inert electron pair [MIII(hino)2X] (M = SbIII, X = Br), type E, with tris-chelate, 6-coordinate complexes with Δ and Λ isomers [MIII(hino)3] (M = FeIII), type E′ of bis-chelate, 6-coordinate complex [MIV(hino)2X2] (M = TiIV, X = Cl), type F, with water-soluble alkali metal salts [MI(hino)] (M = KI), and type H, with tetrakis-chelate, 8-coordinate complexes [MIV(hino)4](M = ZrIV, HfIV). These structural features were compared with those of metal complexes with a related ligand, tropolone (Htrop). The antimicrobial activities of these complexes, evaluated in terms of minimum inhibitory concentration (MIC; μg mL−1) in two systems, were compared to elucidate the relationship between structure and antimicrobial activity.  相似文献   

9.
Magnetite (FeIIFeIII2O4) is often considered as a stable end product of the bioreduction of FeIII minerals (e.g., ferrihydrite, lepidocrocite, hematite) or of the biological oxidation of FeII compounds (e.g., siderite), with green rust (GR) as a mixed FeII‐FeIII hydroxide intermediate. Until now, the biotic transformation of magnetite to GR has not been evidenced. In this study, we investigated the capability of an iron‐reducing bacterium, Shewanella putrefaciens, to reduce magnetite at circumneutral pH in the presence of dihydrogen as sole inorganic electron donor. During incubation, GR and/or siderite (FeIICO3) formation occurred as secondary iron minerals, resulting from the precipitation of FeII species produced via the bacterial reduction of FeIII species present in magnetite. Taking into account the exact nature of the secondary iron minerals and the electron donor source is necessary to understand the exergonic character of the biotic transformation of magnetite to GR, which had been considered to date as thermodynamically unfavorable at circumneutral pH. This finding reinforces the hypothesis that GR would be the cornerstone of the microbial transformations of iron‐bearing minerals in the anoxic biogeochemical cycle of iron and opens up new possibilities for the interpretation of the evolution of Earth's history and for the understanding of biocorrosion processes in the field of applied science.  相似文献   

10.
In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [FeIIICdII(L)(μ-OAc)2]ClO4·0.5H2O (1) complex containing the unsymmetrical ligand H2L = 2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe2IIIHg2II(L)2(OH)2](ClO4)2·2CH3OH (2) and [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [FeIII2HgII2(L)2(OH)2](ClO4)2·2CH3OH (2) can be converted to (3) by the fixation of atmospheric CO2 since the crystal structure of the tetranuclear organometallic complex [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) with an unprecedented {FeIII(μ-Ophenoxo)2(μ-CO3)FeIII} core was obtained through X-ray crystallography. In the reaction 2 → 3 a nucleophilic attack of a FeIII-bound hydroxo group on the CO2 molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the FeIII centers in 3 are antiferromagnetically coupled (J = − 7.2 cm− 1) and that the FeIII-OR-FeIII angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~ 2.5 times more active than 2. In combination with kH/kD isotope effects, the kinetic studies suggest a mechanism in which a terminal FeIII-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long FeIII…HgII distance could be responsible for the lower catalytic effectiveness of 2.  相似文献   

11.
BackgroundExtradiol dioxygenases are a family of nonheme iron (and sometimes manganese) enzymes that catalyze an O2-dependent ring-opening reaction in a biodegradation pathway of aromatic compounds. Here we characterize the thermodynamics of two substrates binding in homoprotocatechuate 2,3-dioxygenase (HPCD) prior to the O2 activation step.MethodsThis study uses microcalorimetry under an inert atmosphere to measure thermodynamic parameters associated with catechol binding to nonheme metal centers in HPCD. Several stopped-flow rapid mixing experiments were used to support the calorimetry experiments.ResultsThe equilibria constant for 4-nitrocatechol and homoprotocatechuate binding to the iron(II) and manganese(II) forms of HPCD range from 2 × 104 to 1 × 106, suggesting there are distinctive differences in how the enzyme–substrate complexes are stabilized. Further experiments in multiple buffers allowed us to correct the experimental ΔH for substrate ionization and to fully derive the pH and buffer independent thermodynamic parameters for substrate binding to HPCD. Fewer protons are released from the iron(II) dependent processes than their manganese(II) counterparts.ConclusionsCondition independent thermodynamic parameters for 4-nitrocatechol and homoprotocatechuate binding to HPCD are highly consistent with each other, suggesting these enzyme–substrate complexes are more similar than once thought, and the ionization state of metal coordinated waters may be playing a role in tuning redox potential and in governing reactivity.General significanceSubstrate binding to HPCD is a complex set of equilibria that includes ionization of substrate and water release, yet it is also the key step in O2 activation. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

12.
Endothelial cell phagokinesis in response to specific metal ions   总被引:1,自引:0,他引:1  
Salts of CuI, II, NiII, SnII, InIII and a sub-fraction of the cupoprotein ceruloplasmin induced phagokinesis of cultured aortal endothelial cells. A variant aortal endothelial cell line was highly sensitive; cells travelled up to 1000 μm in 24 h in response to 2× 10?6 M SnCl2. Other metal ions tested (ZnII, CoII, MnII, CrII, FeIII, AlIII, SbIII and MoII) were not active. The motility response of endothelial cells to Cu ions in vitro is proposed as a model system for studying early events in neovascularization and as a sensitive assay for detecting angiogenic activity in fractions from cells and tissues.  相似文献   

13.
An oxalate-bridged binuclear iron(III) complex, [(acac)2Fe(μ-ox)Fe(acac)2], (acac=acetylacetonate anion and ox2−=oxalate anion) was prepared. The complex crystallized as two types of crystals under different conditions: one had 1,2-dichloroethane as a solvent molecule of crystallization 2, the other did not 1. Both compounds have been characterized by X-ray crystallography, infrared spectroscopy, and thermogravimetric analysis. Compound 1 has also been characterized by UV-Vis and 1H NMR spectroscopies, mass spectrometry, and electrochemistry. In both crystals, each iron(III) is coordinated in an octahedral arrangement by the oxygen atoms of an oxalate-bridging ligand and four oxygen atoms belonging to peripheral acac ligands in an octahedral arrangement. The intermetallic distance of Fe?Fe is 5.4368(9) Å in 1 and 5.438(2) Å in 2. Two iron(III) ions in each crystal are bridged by the oxalate and both lie in the oxalate-plane. The results of thermal analyses imply that the thermal stability of 2 is lower than that of 1. Cyclic voltammograms of 1 in acetonitrile and dichloromethane at low temperature showed two consecutive, quasi-Nernstian, one-electron reduction steps corresponding to the reduction of FeIII-FeIII to FeIII-FeII followed by the reduction of FeIII-FeII to FeII-FeII. The electrochemical comproportionation constants (Kc) of the equilibrium (FeIII-FeIII) + (FeII-FeII) ? 2(FeIII-FeII) are 108.9 in acetonitrile medium and 108.5 in dichloromethane, respectively. The considerably large Kc values indicate that the main factor contributing to the stabilization of the FeIII-FeII mixed-valence state is electronic delocalization through the oxalate-bridge.  相似文献   

14.
Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn2+ before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO4. Inductively coupled plasma mass spectrometry and Mössbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [FeII/FeII]-ADE catalyzed the conversion of H2O2 to O2 and H2O. The values of kcat and kcat/Km for the catalase activity are 200 s−1 and 2.4 × 104 M−1 s−1, respectively. [FeII/FeII]-ADE underwent more than 100 turnovers with H2O2 before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with gave = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H2O2 by [FeII/FeII]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.  相似文献   

15.
Kovács K  Kuzmann E  Tatár E  Vértes A  Fodor F 《Planta》2009,229(2):271-278
Distinct chemical species of iron were investigated by Mössbauer spectroscopy during iron uptake into cucumber roots grown in unbuffered nutrient solution with or without 57Fe-citrate. Mössbauer spectra of iron deficient roots supplied with 10–500 μM 57Fe-citrate for 30–180 min and 24 h and iron-sufficient ones, were recorded. The roots were analysed for Fe concentration and Fe reductase activity. The Mössbauer parameters in the case of iron-sufficient roots revealed high-spin iron(III) components suggesting the presence of FeIII-carboxylate complexes, hydrous ferric oxides and sulfate–hydroxide containing species. No FeII was detected in these roots. However, iron-deficient roots supplied with 0.5 mM 57FeIII-citrate for 30 min contained significant amount of FeII in a hexaaqua complex form. This is a direct evidence for the Strategy I iron uptake mechanism. Correlation was found between the decrease in Fe reductase activity and the ratio of FeII–FeIII components as the time of iron supply was increased. The data may refer to a higher iron reduction rate as compared to its uptake/reoxidation in the cytoplasm in accordance with the increased reduction rate in iron deficient Strategy I plants.  相似文献   

16.
Hydrogen bonding networks proximal to metal centers are emerging as a viable means for controlling secondary coordination spheres. This has led to the regulation of reactivity and isolation of complexes with new structural motifs. We have used the tridenate ligand bis[(N′-tert-butylureido)-N-ethyl]-N-methylaminato ([H21]2−) that contains two hydrogen bond donors to examine the oxidation of the FeII-acetate complex, [FeIIH212-OAc)] with dioxygen, amine N-oxides, and xylyl azide. A complex with FeIII-O-FeIII core results from the oxidation with dioxygen and amine N-oxides, in which the oxo ligand is involved in hydrogen bonding to the [H21]2− ligand. A distinctly different hydrogen bonding network was found in FeIII dimer isolated from the reaction with the xylyl azide: a rare FeIII-N(R)-FeIII core was observed that does not have hydrogen bonds to the bridging nitrogen atom. The intramolecular H-bond networks within these dimers appear to adjust to the presence of the bridging species and rearrange to its size and electron density.  相似文献   

17.
The common metal chelation agents, DTPA and EDTA are often used as models for physiological low-molecular weight iron complexes in biochemical studies, or for common biochemical protocols. In the biochemical literature there are apparent conflicts as to whether EDTA and DTPA are pro-oxidant or antioxidant additives. This apparent conflict is puzzling since in chemical systems FeIIEDTA and FeIIDTPA are well known Fenton reaction reagents. In this investigation we examined the voltammetric characteristics of the iron complexes of EDTA, DTPA, and citrate and the effect of the ligand:metal ratio (L:M) on the electrocatalytic (EC') waves that result from reduction of H2O2 by this complex. At a ratio of 1:1, the cyclic voltammetric waves of the complexes indicate the presence of a reversible species corresponding to the FeII/IIIL couple, along with a second irreversible reduction peak. The second irreversible voltammetric peak decreases at higher L:M ratios for EDTA and citrate. The 1:1 iron complexes of EDTA, DTPA, and citrate clearly induce the catalytic reduction of H2O2. In the presence of a greater than 100 fold excess of H2O2 relative to iron, higher L:M ratios greatly reduced the catalytic EC' wave compared to the 1:1 ratios. At H2O2:Fe ratios less than 50, the L:M ratio has very little effect of the EC' current. These observations may explain the apparent discrepancies in the biochemical literature. Addition of EDTA or DTPA may enhance oxidative processes if the L:M is low (less than unity), whereas rates of on-going oxidative processes may decrease if that ratio, along with the relative amount of H2O2, are both high (excess ligand). The impact of this study is of particular importance given the widespread use of these ligands in biochemical studies.  相似文献   

18.
The stability of (all-E)-β-carotene toward dietary iron was studied in a mildly acidic (pH 4) micellar solution as a simple model of the postprandial gastric conditions. The oxidation was initiated by free iron (FeII, FeIII) or by heme iron (metmyoglobin, MbFeIII). FeII and metmyoglobin were much more efficient than FeIII at initiating β-carotene oxidation. Whatever the initiator, hydrogen peroxide did not accumulate. Moreover, β-carotene markedly inhibited the conversion of FeII into FeIII. β-Carotene oxidation induced by FeII or MbFeIII was maximal with 5–10 eq FeII or 0.05–0.1 eq MbFeIII and was inhibited at higher iron concentrations, especially with FeII. UPLC/DAD/MS and GC/MS analyses revealed a complex distribution of β-carotene-derived products including Z-isomers, epoxides, and cleavage products of various chain lengths. Finally, the mechanism of iron-induced β-carotene oxidation is discussed. Altogether, our results suggest that dietary iron, especially free (loosely bound) FeII and heme iron, may efficiently induce β-carotene autoxidation within the upper digestive tract, thereby limiting its supply to tissues (bioavailability) and consequently its biological activity.  相似文献   

19.
The reactions of hydroxylamine (HA) with several water-soluble iron(III) porphyrinate compounds, namely iron(III) meso-tetrakis-(N-ethylpyridinium-2yl)-porphyrinate ([FeIII(TEPyP)]5+), iron(III) meso-tetrakis-(4-sulphonatophenyl)-porphyrinate ([FeIII(TPPS)]3−), and microperoxidase 11 ([FeIII(MP11)]) were studied for different [FeIII(Porph)]/[HA] ratios, under anaerobic conditions at neutral pH. Efficient catalytic processes leading to the disproportionation of HA by these iron(III) porphyrinates were evidenced for the first time. As a common feature, only N2 and N2O were found as gaseous, nitrogen-containing oxidation products, while NH3 was the unique reduced species detected. Different N2/N2O ratios obtained with these three porphyrinates strongly suggest distinctive mechanistic scenarios: while [FeIII(TEPyP)]5+ and [FeIII(MP11)] formed unknown steady-state porphyrinic intermediates in the presence of HA, [FeIII(TPPS)]3− led to the well characterized soluble intermediate, [FeII(TPPS)NO]4−. Free-radical formation was only evidenced for [FeIII(TEPyP)]5+, as a consequence of a metal centered reduction. We discuss the catalytic pathways of HA disproportionation on the basis of the distribution of gaseous products, free radicals formation, the nature of porphyrinic intermediates, the FeII/FeIII redox potential, the coordinating capabilities of each complex, and the kinetic analysis. The absence of revealed either that no HAO-like activity was operative under our reaction conditions, or that , if formed, was consumed in the reaction milieu.  相似文献   

20.
Iron (II) and iron (III) complexes, [FeII(DEDTC)2(dppe)] · CH2Cl2 (1), [FeII(ETXANT)2(dppe)] (2) (DEDTC = diethyldithiocarbamate, ETXANT = ethyl xanthate, dppe = 1,2-bis (diphenylphosphino) ethane), and [FeIII(DEDTC)2(dppe)] [FeIIICl4] (3) have been synthesized and characterized. Since 3 contains two magnetic centers, an anion metathesis reaction has been conducted to replace the tetrahedral FeCl4 by a non-magnetic BPh4 ion producing [FeIII(DEDTC)2(dppe)]BPh4 (4) for the sake of unequivocal understanding of the magnetic behavior of the cation of 3. With the similar end in view, the well-known FeCl4 ion, the counter anion of 3, is trapped as PPh4[FeIIICl4] (5) and its magnetic property from 298 to 2 K has been studied. Besides the spectroscopic (IR, UV-Vis, NMR, EPR, Mass and XPS) characterization of the appropriate compounds, especially 2, others viz. 1, 3 and 4 have been structurally characterized by X-ray crystallography. While FeII complexes, 1 and 2, are diamagnetic, the FeIII systems, namely the cations of 3, and 4 behave as low-spin (S = 1/2) paramagnetic species from 298 to 50 K. Below 50 K 3 shows gradual increase of χMT up to 2 K suggesting ferromagnetic behavior while 4 exhibits gradual decrease of magnetic moment from 60 to 2 K, indicating the occurrence of weak antiferromagnetic interaction. These conclusions are supported by the Mössbauer studies of 3 and 4. The Mössbauer pattern of 1 exhibits a doublet site for diamagnetic (2-400 K) FeII. The compounds 1, 2 and 4 encompass interesting cyclic voltammetric responses involving FeII, FeIII and FeIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号