首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Mehlis' gland of both Diplozoon paradoxum and Calicotyle kröyeri is composed of two cell types that taper to form ducts opening into the lumen of the ootype. The cells are invested with fibrous interstitial material and form a close structural relationship with surrounding parenchyma. The most prevalent cell type, the S1 cell, is characterized by an extensive GER with narrow cisternae containing a finely granular material, and numerous Golgi stacks involved in the formation of multi-vesicular secretory bodies. In the S2 cells the GER cisternae are greatly distended with a finely filamentous material and the Golgi give rise to dense secretory bodies with a packed fibrous appearance. There are species differences in the fine structure of the secretory bodies and these may reflect differences in the chemical composition of the glands. The ducts of the glands are lined with microtubules and are anchored to the ootype epithelium by septate desmosomes. They convey the secretory products to the ootype where they are released, apparently by exocytosis involving membrane fusion, into the lumen. The ootype is lined by a highly folded cellular epithelium which in D. paradoxum is ciliated. The cells contain profiles of GER and Golgi complexes and produce a third type of secretion which is also discharged into the ootype lumen.  相似文献   

2.
Accessory gland secretions of male insects have many important functions including the formation of spermatophores. We used light and electron microscopy to investigate the structure of the accessory glands and posterior vasa deferentia of the carabid beetle Pterostichus nigrita to try to determine where spermatophore material is produced. Each accessory gland and posterior vas deferens had an outer layer of longitudinal muscle, beneath which was a layer of connective tissue and a thin band of circular muscle, all of which surrounded a layer of epithelial cells lining the lumen of the ducts. Based on the ultrastructure of the epithelial cells, and their secretory products, we identified two epithelial cell types in each region (distal and proximal) of the accessory glands and four types in the posterior vas deferens. Most secretory products, which stained positively for proteins and some mucins, were released into the lumen of the ducts by apocrine secretion. The accessory glands produced one type of secretory product whereas in posterior vasa deferentia, four types of secretory products were found layered in the lumen. Our results suggest that most of the structural material used to construct a spermatophore is produced by the cells of the posterior vasa deferentia.  相似文献   

3.
Summary The functional morphology of the mammiliform penial glands ofLittorina saxatilis has been investigated with both light and electron microscopy. These penial glands line the ventral edge of the penis and orient with the female mantle during copulation. Secretions are released from the penial glands to this interface where they probably function in adhesion. The penial gland secretions comprise heterogeneous granules as well as apocrine and mucous secretions. The heterogeneous granules are produced in separate multicellular glands arranged in a series of lobes that lie outside a thick smooth muscle layer enclosing the lumen. Each glandular lobe is surrounded by a thin layer of smooth muscle. Secretions are transported in individual cellular processes that pass through the thick smooth muscle layer and empty into the lumen. Surrounding the lumen is an epithelium containing apocrine secretory cells as well as occasional goblet-type, mucous cells. The combined action of the muscles forces secretions out of the lumen through the penial papilla, onto the external surface of the mammiliform penial gland. Longitudinal muscles extend into the penial papilla enabling its protrusion or retraction. Retraction of the penial papilla following secretion release is thought to create negative pressure beneath the penial gland producing suction adhesion. The visco-elastic properties of the penial gland secretion are qualitatively different from foot mucus and may represent specialization to an adhesive function.  相似文献   

4.
Podisus nigrispinus Dallas (Hemiptera: Pentatomidae) is a zoophytophagous insect with a potential for use as a biological control agent in agriculture because nymphs and adults actively prey on various insects by inserting mouthparts and regurgitating the contents of the salivary glands inside the prey, causing rapid paralysis and death. However, the substances found in saliva of P. nigrispinus that causes the death of the prey are unknown. As a first step to identify the component of the saliva of P. nigrispinus, this study evaluated the ultrastructure and cytochemistry of the salivary glands of P. nigrispinus. The salivary system of P. nigrispinus has a pair of principal salivary glands, which are bilobed with a short anterior lobe and a long posterior lobe, and a pair of tubular accessory glands. The principal gland epithelium is composed of a single layer of cells enclosing a large lumen. Epithelial cells of the principal salivary gland vary from cubic to columnar shape, with one or two spherical and well-developed nuclei. Cells of the anterior lobe of the principal salivary gland have an apical surface with narrow, short, and irregular plasma membrane foldings; apical and perinuclear cytoplasm rich in rough endoplasmic reticulum; and mitochondria with tubular cristae. The basal portion of the secretory cells has mitochondria associated with many basal plasma membrane infoldings that are short but form large extracellular canals. Secretory granules with electron-dense core and electron-transparent peripheral are dispersed throughout the cytoplasm. Cells of the posterior lobe of the principal salivary gland are similar to those of the anterior lobe, except for the presence of mitochondria with transverse cristae. The accessory salivary gland cells are columnar with apical microvilli, have well-developed nucleus and cytoplasm rich in rough endoplasmic reticulum, and have secretory granules. Cytochemical tests showed positive reactions for carbohydrate, protein, and acid phosphatase in different regions of the glandular system. The principal salivary glands of P. nigrispinus do not have muscle cells attached to its wall, suggesting that saliva-releasing mechanism may occurs with the participation of some thorax muscles. The cytochemical and ultrastructural features suggest that the principal and accessory salivary glands play a role in protein synthesis of the saliva.  相似文献   

5.
The venom gland of Crotalus viridis oreganus is composed of two discrete secretory regions: a small anterior portion, the accessory gland, and a much larger main gland. These two glands are joined by a short primary duct consisting of simple columnar secretory cells and basal horizontal cells. The main gland has at least four morphologically distinct cell types: secretory cells, the dominant cell of the gland, mitochondria-rich cells, horizontal cells, and “dark” cells. Scanning electron microscopy shows that the mitochondria-rich cells are recessed into pits of varying depth; these cells do not secrete. Horizontal cells may serve as secretory stem cells, and “dark” cells may be myoepithelial cells. The accessory gland contains at least six distinct cell types: mucosecretory cells with large mucous granules, mitochondria-rich cells with apical vesicles, mitochondria-rich cells with electron-dense secretory granules, mitochondria-rich cells with numerous cilia, horizontal cells, and “dark” cells. Mitochondria-rich cells with apical vesicles or cilia cover much of the apical surface of mucosecretory cells and these three cell types are found in the anterior distal tubules of the accessory gland. The posterior regions of the accessory gland lack mucosecretory cells and do not appear to secrete. Ciliated cells have not been noted previously in snake venom glands. Release of secretory products (venom) into the lumen of the main gland is by exocytosis of granules and by release of intact membrane-bound vesicles. Following venom extraction, main gland secretory and mitochondria-rich cells increase in height, and protein synthesis (as suggested by rough endoplasmic reticulum proliferation) increases dramatically. No new cell types or alterations in morphology were noted among glands taken from either adult or juvenile snakes, even though the venom of each is quite distinct. In general, the glands of C. v. oreganus share structural similarities with those of crotalids and viperids previously described.  相似文献   

6.
Purba Pal 《Acta zoologica》2007,88(2):145-152
Within the clade Euthyneura the marine basommatophorans are particularly neglected. More morphological and molecular studies are needed because their phylogenetic relationships with other pulmonates remain unresolved. The present study examines the most conspicuous reproductive gland, the glandular complex in two marine limpets, Siphonaria capensis and S. serrata (Pulmonata: Basommatophora) at both gross and fine structural levels. These two sympatric species with different developmental modes were selected to compare the structure and function of this enormous glandular structure. In both S. capensis and S. serrata, the glandular complex shows an undifferentiated state composed of an acidophilic albumen gland and a basophilic mucous gland. The glands contain secretory cells and supporting cells (= ciliated cells) that are highly ciliated. When the histochemical properties of the glandular complex were compared with those of siphonariid egg masses (of each species) it could be established that the albumen gland was responsible for the production of perivitelline fluid whereas the mucous gland secreted substances that help in the assembly of mucous layers surrounding the egg capsules. We suggest that the presence of a single glandular complex comprised of two glands is the most primitive organization of reproductive glands in pulmonates. Furthermore, the histology, fine structure and histochemistry of these glands are very similar to those of the reproductive glands of opisthobranchs.  相似文献   

7.
Cytological variations of the median and the 2 lateral accessory glands of Bruchidius atrolineatus Pic (Coleoptera : Bruchidae) were examined as a function of age and the reproduction of the male. In sexually active virgin males, the secretory epithelium is columnar at emergence, but progressively flattens, and the secretions formed and stored by its cells are expelled by exocytosis into the glandular lumen. After 10 days, the male accessory glands exhibit a stage of repletion, characteristic of glands temporarily storing their secretions in their lumen. In diapausing males, the genital tract is relatively undeveloped and the accessory glands are reduced to tubules, whose lumen, surrounded by an epithelium composed of narrow cells, contains little secreted material. The presence of secretion aggregates in the secretory epithelial cells, the abundance of rough endoplasmic reticulum in them, and the release of a part of their secretions into the glandular lumen, indicate that reproductive diapause in B. atrolineatus is characterized by a decrease in the reproductive function. and not its total arrest.  相似文献   

8.
The caecilian amphibians are richly endowed with cutaneous glands, which produce secretory materials that facilitate survival in the hostile subterranean environment. Although India has a fairly abundant distribution of caecilians, there are only very few studies on their skin and secretion. In this background, the skin of Ichthyophis beddomei from the Western Ghats of Kerala, India, was subjected to light and electron microscopic analyses. There are two types of dermal glands, mucous and granular. The mucous gland has a lumen, which is packed with a mucous. The mucous-producing cells are located around the lumen. In the granular gland, a lumen is absent; the bloated secretory cells, filling the gland, are densely packed with granules of different sizes which are elegantly revealed in TEM. There is a lining of myo-epithelial cells in the peripheral regions of the glands. Small flat disk-like dermal scales, dense with squamulae, are embedded in pockets in the dermis, distributed among the cutaneous glands. 1–4 scales of various sizes are present in each scale pocket. Scanning electron microscopic observation of the skin surface revealed numerous glandular openings. The skin gland secretions, exuded through the pores, contain fatty acids, alcohols, steroid, hydrocarbons, terpene, aldehyde and a few unknown compounds.  相似文献   

9.
The unusual idiosomal glands of a water mite Teutonia cometes (Koch 1837) were examined by means of transmission and scanning electron microscopy as well as on semi-thin sections. One pair of these glands is situated ventrally in the body cavity of the idiosoma. They run posteriorly from the terminal opening (distal end) on epimeres IV and gradually dilate to their proximal blind end. The terminal opening of each gland is armed with the two fine hair-like mechanoreceptive sensilla (‘pre-anal external’ setae). The proximal part of the glands is formed of columnar secretory epithelium with a voluminous central lumen containing a large single ‘globule’ of electron-dense secretory material. The secretory gland cells contain large nuclei and intensively developed rough endoplasmic reticulum. Secretory granules of Golgi origin are scattered throughout the cell volume in small groups and are discharged from the cells into the lumen between the scarce apical microvilli. The distal part of the glands is formed of another cell type that is not secretory. These cells are composed of narrow strips of the cytoplasm leaving the large intracellular vacuoles. A short excretory cuticular duct formed by special excretory duct cells connects the glands with the external medium. At the base of the terminal opening a cuticular funnel strengthens the gland termination. At the apex of this funnel a valve prevents back-flow of the extruded secretion. These glands, as other dermal glands of water mites, are thought to play a protective role and react to external stimuli with the help of the hair-like sensilla.  相似文献   

10.
Females of Chrysomya putoria (Diptera: Calliphoridae) have two sexual accessory glands, which are tubular and more dilated at the distal extremity. The glands open independently into the common oviduct. Two morpho-physiological regions were distinguished in the longitudinal semi-thin sections of the glands. The secretory region is constituted by three layers: a cuticular intima, lining the lumen, followed by a layer of small cells, and then a layer of very large secretory cells. The ductal region of the gland presents only two layers: the cuticular intima and a cellular layer. In both regions a basement membrane is present. Each secretory cell has in its apical region a reservoir, which enlarges throughout oogenesis; in its basal region there is a large nucleus. The ductal cells are cylindrical and smaller than the secretory cells. The glandular secretion is synthesized in the cytoplasm of the secretory cells, stored and/or modified in the reservoir, then drained to the lumen through an end apparatus seen in the apical region of the secretory cell. Histochemical tests indicate that this secretion is a glycoprotein. Measurements of the glands from females at different physiological conditions and fed on different diets correlate with the results obtained for changes in the ovary during oogenesis. Cell number averaged 561.2 ± 77.54 per gland. There was no increase in cell number during oogenesis.  相似文献   

11.
Changes in the ultrastructure of epithelial cells from long hyaline glands of male Melanoplus sanguinipes (Fabr.) (Orthoptera : Acrididae) have been examined during sexual maturation and after allatectomy. In newly emerged males, the long hyaline gland epithelium is composed of 1–3 cell layers. The cells contain almost no rough endoplasmic reticulum, inconspicuous Golgi complexes, and large numbers of free ribosomes and polysomes. Within 24 hr, the cells undergo considerable reorganization to form a 1-cell-thick layer. Changes in cytostructure include proliferation of the rough endoplasmic reticulum and the development of several elaborate Golgi complexes. The developing lumen contains a coarse fibrous material. By 3 days postemergence, columnar epithelial cells are clearly capable of considerable synthesis and export of secretory protein. Rough endoplasmic reticulum, and large, elaborate Golgi complexes are the major structural features of the cytoplasm. From day 3 to sexual maturity (day 7), no major ultrastructural changes occur, although massive accumulation of secretion in the lumen causes the epithelium to become cuboidal or flattened. Isoelectric focusing of soluble proteins from long hyaline gland secretions shows that maturing glands contain increasing numbers and quantities of secretory proteins.Allatectomy has minor effects on long hyaline gland ultrastructure. A reduction in the density of rough endoplasmic reticulum and ribosomes suggests that glands from operated males are metabolically less active. This is confirmed by qualitative and quantitative changes in the amount of secretion as revealed by isoelectric focusing. The observations are discussed in terms of the juvenile hormone control of long hyaline gland maturation.  相似文献   

12.
The paired accessory glands of the male mosquito, Aedes triseriatus, consisted of a single layer of columnar epithelial cells enclosed by a richly-nucleated circular muscle layer. Each accessory gland is divided into an anterior gland (AG) with one type of secretory cell, and a posterior gland (PG) with two types. The cells of the AG and those of the anterior region of the PG showed macroapocrine secretion. The mucus secreting cells located at the posterior region of the PG, however, released their contents into the lumen of the gland by rupturing the apical membrane of the cell. The secretion from all cells was in the form of membrane-bound granules which had distinct electron-dense and electron-lucent areas.  相似文献   

13.
The morphology and the ultrastructure of the male accessory glands and ejaculatory duct of Ceratitis capitata were investigated. There are two types of glands in the reproductive apparatus. The first is a pair of long, mesoderm-derived tubules with binucleate, microvillate secretory cells, which contain smooth endoplasmic reticulum and, in the sexually mature males, enlarged polymorphic mitochondria. The narrow lumen of the gland is filled with dense or sometimes granulated secretion, containing lipids. The second type consists of short ectoderm-derived glands, finger-like or claviform shaped. Despite the different shape of these glands, after a cycle of maturation, their epithelial cells share a large subcuticular cavity filled with electron-transparent secretion. The ejaculatory duct, lined by cuticle, has epithelial cells with a limited involvement in secretory activity. Electrophoretic analysis of accessory gland secretion reveals different protein profiles for long tubular and short glands with bands of 16 and 10 kDa in both types of glands. We demonstrate that a large amount of accessory gland secretion is depleted from the glands after 30 min of copulation.  相似文献   

14.
The histology of the paracloacal 'musk' glands of adult American alligators ( Alligator mississippiensis ) is described. The gland is a single secretory sac with a single duct and a central lumen partially occluded by a central, cylindrical conglomerate of cells and secretion product. The capsule of the gland consists of an outer layer of smooth muscle and an inner layer of connective tissue containing collagen and elastin fibres. Septa carrying blood vessels radiate from the connective tissue layer of the capsule to the border of the central conglomerate. Parenchymal cells containing lipid droplets enlarge from the periphery to the centre of the gland. Secretions formed by degeneration of cells in the central cylinder are concentrated near the secretory duct. Histochemical tests indicate lipids but not mucopolysaccharides in the glandular exudate.  相似文献   

15.
The venom apparatus of the scorpion, C. sculpturatus (Ewing) was studied with light and electron microscopy. Each of the paired glands is lined by secretory epithelium made up of a single layer of columnar cells. Extensive folding in the epithelial layer creates a primitive acinar gland. The secretory products are either membrane-bound or unbound vesicles with discrete morphologies and are observed in the extruded venom, within the lumen of the gland, and within single secretory cells. The venom apparatus, including connective tissues, nerve cells, and muscle tunic is described and correlations are made with observations in other Athropods.  相似文献   

16.
Organization of dermal glands in adult water mites Teutonia cometes (Koch, 1837) was studied using light-optical, SEM and TEM methods for the first time. These glands are large and occur in a total number of ten pairs at the dorsal, ventral and lateral sides of the body. The slit-like external openings of the glands (glandularia) are provided with a cone-shaped sclerite, and are combined with a single small trichoid seta (hair sensillum), which is always situated slightly apart from the anterior aspect of the gland opening. Each gland is formed by an epithelium encompassing a very large lumen (central cavity) normally filled with secretion that stains in varying intensity on toluidine blue stained sections. The epithelium is composed of irregularly shaped secretory cells with an electron-dense cytoplasm and infolded basal portions. The cells possess a large irregularly shaped nucleus and are filled with tightly packed slightly dilated cisterns and vesicles of rough endoplasmic reticulum (RER) with electron lucent contents. Dense vesicles are also present in the apical cell zone. Some cells undergo dissolution, occupy an upper position within the epithelium and have a lighter cytoplasm with disorganized RER. Muscle fibers are regularly present in the deep folds of the basal cell portions and may serve to squeeze the gland and eject the secretion into the external milieu. The structure of these dermal glands is compared with the previously described idiosomal glands of the same species and a tentative correlation with the glandularia system of water mites is given. Possible functions of the dermal glands of T. cometes are discussed.  相似文献   

17.
The digger wasp species Ampulex compressa produces its venom in two branched gland tubules. They terminate in a short common duct, which is bifurcated at its proximal end. One leg is linked with the venom reservoir, the other one extends to the ductus venatus. Each venom gland tubule possesses, over its entire length, a cuticle-lined central duct. Around this duct densely packed class 3 gland units each composed of a secretory cell and a canal cell are arranged. The position of their nuclei was demonstrated by DAPI staining. The brush border of the secretory cells surrounds the coiled end-apparatus. Venom is stored in a bladder like reservoir, which is surrounded by a thin reticulated layer of muscle fibres. The reservoir as a whole is lined with class 3 gland units. The tubiform Dufour's gland has a length of about 350 μm (∅ 125 μm) only and is surrounded by a network of pronounced striated muscle fibres. The glandular epithelium is mono-layered belonging to the class 1 type of insect epidermal glands. The gland cells are characterized by conspicuous lipid vesicles. Secretion of material via the gland cuticle into the gland lumen is apparent. Analysis of the polypeptide composition demonstrated that the free gland tubules and the venom reservoir contain numerous proteins ranging from 3.4 to 200 kDa. The polypeptide composition of the Dufour's gland is completely different and contains no lectin-binding glycoproteins, whereas a dominant component of the venom droplets is a glycoprotein of about 80 kDa. Comparison of the venom reservoir contents with the polypeptide pattern of venom droplets revealed that all of the major proteinaceous constituents are secreted. The secreted venom contains exclusively proteins present in the soluble contents of the venom gland. The most abundant compound class in the Dufour's gland consisted of n-alkanes followed by monomethyl-branched alkanes and alkadienes. Heptacosane was the most abundant n-alkane. Furthermore, a single volatile compound, 2-methylpentan-3-one, was identified in various concentrations in the lipid extract of the Dufour's gland.  相似文献   

18.
Termites have developed many exocrine glands, generally dedicated to defence or communication. Although a few of these glands occur in all termite species, or represent synapomorphies of larger clades, others are morphological innovations of a single species, or a few related species. Here, we describe the nasus gland, a new gland occurring at the base of the nasus of Angularitermes soldiers. The nasus gland is composed of class 1, 2, and 3 secretory cells, a rare combination that is only shared by the sternal and tergal glands of some termites and cockroaches. The ultrastructural observations suggest that the secretion is produced by class 2 and 3 secretory cells, and released mostly by class 3 cells. The base of the nasus has a rough appearance due to numerous pits bearing openings of canals conducting the secretion from class 3 secretory cells to the exterior. We tentatively assign a defensive function to the nasus gland, although further research is needed to confirm this function. Although the gland is described only from species of Angularitermes, other genera of Nasutitermitinae also present a rough nasus base, suggesting the presence of a similar, possibly homologous, gland.  相似文献   

19.
The bilateral salivary glands, ducts, and nerves of the giant garden slug Limax maximus control the secretion of saliva and its transport to the buccal mass. Each salivary nerve, which originates at the buccal ganglion, contains over 3000 axon profiles. The axons innervate the musculature of the duct and branch within the gland. The salivary duct is composed of several muscular layers surrounding an epithelial layer which lines the duct lumen. The morphology of the duct epithelium indicates that it may function in ion or water balance. The salivary gland contains four major types of secretory cells. The secretory products are released from vacuoles in the gland cells, and are presumably transported by cilia in the collecting ducts of the gland into the larger muscular ducts.  相似文献   

20.
Sperm storage in female insects is important for reproductive success and sperm competition. In Drosophila melanogaster females, sperm viability during storage is dependent upon secretions produced by spermathecae and parovaria. Class III dermal glands are present in both structures. Spermathecal glands are initially comprised of a three-cell unit that is refined to a single secretory cell in the adult. It encapsulates an end-apparatus joining to a cuticular duct passing secretions to the spermathecal lumen. We have examined spermatheca morphogenesis using DIC and fluorescence microscopy. In agreement with a recent study, cell division ceases by 36 h after puparium formation (APF). Immunostaining of the plasma membrane at this stage demonstrates that gland cells wrap around the developing end-apparatus and each other. By 48–60 h APF, the secretory cell exhibits characteristic adult morphology of an enlarged nucleus and extracellular reservoir. A novel finding is the presence of an extracellular reservoir in the basal support cell that is continuous with the secretory cell reservoir. Some indication of early spermathecal gland formation is evident in the division of enlarged cells lying adjacent to the spermathecal lumen at 18 h APF and in cellular processes that bind clusters of cells between 24 and 30 h APF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号