首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
浓香型白酒发酵过程微生物合成正丙醇途径解析   总被引:1,自引:0,他引:1  
田源  孔小勇  方芳 《微生物学报》2020,60(7):1421-1432
【目的】揭示浓香型白酒窖内发酵过程与正丙醇合成相关的微生物和代谢途径。【方法】通过对浓香型白酒窖内发酵过程酒醅中微生物的宏转录组进行分析,解析与正丙醇合成相关的微生物和代谢途径,并验证相关微生物合成正丙醇的能力。【结果】浓香型白酒窖内发酵过程中有3条可能的酒醅微生物合成正丙醇的途径。真菌主要通过2-甲基苹果酸代谢途径和苏氨酸代谢途径合成正丙醇,细菌则主要通过丙酸代谢途径合成并参与苏氨酸代谢途径。宏转录组测序分析表明,这3条途径对白酒窖内发酵过程正丙醇的合成与积累均有贡献,并且微生物通过这3条途径合成正丙醇的时期和能力存在较大差异。此外,对分离自酒醅的酵母和乳酸菌合成正丙醇能力分析发现,它们均与浓香型白酒窖内发酵过程正丙醇的合成有关。【结论】本研究揭示了浓香型白酒窖内发酵过程中正丙醇合成相关的微生物和代谢途径,为阐明白酒发酵过程中正丙醇的形成机制奠定了理论基础。  相似文献   

2.
近15年来的实验结果改变了脂肪组织是惰性的储蓄场所的概念。脂肪组织主要在脂肪的合成、氧化、储存及释出方面都是非常活跃的体系,并且是碳水化合物与脂类代谢间相互联系的主要地点。本文拟就脂肪组织中脂类代谢最新研究成  相似文献   

3.
万小荣  李玲 《植物学报》2004,21(3):352-359
脱落酸(ABA)生物合成一般有两条途径:C15直接途径和C40间接途径, 前者经C15法呢焦磷酸(FPP)直接形成ABA;后者经由类胡萝卜素的氧化裂解间接形成ABA, 是高等植物ABA生物合成的主要途径。9-顺式环氧类胡萝卜素氧化裂解为黄质醛是植物ABA生物合成的关键步骤, 然后黄质醛被氧化形成一种酮, 该过程需NAD为辅因子, 酮再转变形成ABA-醛, ABA-醛氧化最终形成ABA。在该途径中,玉米黄质环氧化酶(ZEP)、9-顺式环氧类胡萝卜素双加氧酶(NCED)和醛氧化酶(AO)可能起重要作用。  相似文献   

4.
高等植物脱落酸生物合成途径及其酶调控   总被引:1,自引:0,他引:1  
万小荣  李玲 《植物学通报》2004,21(3):352-359
脱落酸(ABA)生物合成一般有两条途径:C15直接途径和C40间接途径,前者经C15法呢焦磷酸(FPP)直接形成ABA;后者经由类胡萝卜素的氧化裂解间接形成ABA,是高等植物ABA生物合成的主要途径.9-顺式环氧类胡萝卜素氧化裂解为黄质醛是植物ABA生物合成的关键步骤,然后黄质醛被氧化形成一种酮,该过程需NAD为辅因子,酮再转变形成ABA-醛,ABA-醛氧化最终形成ABA.在该途径中,玉米黄质环氧化酶(ZEP)、9-顺式环氧类胡萝卜素双加氧酶(NCED)和醛氧化酶(AO)可能起重要作用.  相似文献   

5.
葡萄糖转运蛋白4(GLUT4)。主要分布于骨胳肌,心肌及脂肪组织中,当胰岛素与细胞膜受体结合后。产生一系列信号,促进GLUT4从胞内易位至细胞膜,GLUT4通过自身构象改变。将葡萄糖摄入细胞内,从而协助维持血糖的稳定,这些具体信号正在被广泛深入的研究。现在发现至少有两条独立的信号传导途径。一条是经典的PI3K途径。另一条是新近发现的Cb1/CAP途径。深入了解这些信号传导途径。对于揭示2型糖尿病的发病机制有重要的意义。  相似文献   

6.
草酸是植物体内一种简单的二元酸,在植物中广泛分布,具有重要的生理功能。然而草酸作为一种抗营养素,大量食用含草酸的蔬菜可以显著影响矿物元素的吸收和增加患肾结石的风险。植物中草酸的合成有三条途径,即乙醛酸/乙醇酸途径、抗坏血酸途径和草酰乙酸合成途径;草酸的降解也有三种方式,即经过氧化、脱羧和乙酰化作用最终生成CO2。植物草酸的积累受品种和施肥及种植季节等农艺管理技术的影响。  相似文献   

7.
烯效唑对水稻幼苗内源IAA含量的影响   总被引:3,自引:0,他引:3  
研究了烯效唑对3~H-IAA色氨酸合成3~H-IAA的效率及对IAA氧化酶活性的影响,以探讨烯效唑延缓植物生长的作用机理。结果表明,烯效唑对水稻(Oryza sativa L.)幼苗生长的控制效应与其降低内源IAA含量有关,烯效唑浸种处理降低水稻幼苗内源IAA含量有两条途径,其一是提高水稻幼苗IAA氧化酶活性,增强内源IAA的氧化;其二是阻抑内源IAA的合成。烯效唑除阻抑内源赤霉素的生物合成而延缓作物生长外,通过降低内源IAA水平也可能是其延缓作物生长的一个原因。  相似文献   

8.
由胆固醇合成胆汁酸有两条途径。一条是经典途径或中性途径[1] ,也是合成胆汁酸最主要的途径 ,其限速反应为胆固醇 7α 羟化酶 (由Cyp7a编码 )催化胆固醇羟化为 7α 羟胆固醇的反应。近几年发现另一条胆汁酸合成的酸性途径[2 ] ,这一途径开始于胆固醇转变为氧固醇 (oxysterol) ,然后经氧固醇 7α 羟化酶 (由Cyp7b编码 )催化产生 7α 羟氧固醇化合物 ,再融入胆汁酸合成经典途径的下游步骤。由于胆固醇在体内有重要作用 ,有效调节胆固醇分解代谢以维持胆固醇水平的动态平衡十分重要。研究发现 ,胆汁酸以及合成过程中的中间产…  相似文献   

9.
目的:筛查在正常人、单纯性肥胖患者及肥胖伴2型糖尿病患者内脏脂肪组织中差异表达的基因。方法:利用自制的高密度cDNA芯片,比较正常人、单纯性肥胖患者及肥胖伴2型糖尿病患者内脏脂肪组织中差异表达的基因,以寻找脂肪组织特异的与肥胖及糖尿病发生有关的基因。结果:和正常人相比,在肥胖患者及肥胖伴2型糖尿病患者中上调的基因分别有119个和257个,下调的基因分别有46和58个。这些基因中有77个在两组中均上调,其中包括与代谢有关的基因,如丙酮酸脱氢酶激酶4(PDK4)以及窖蛋白、金属硫因蛋白等;8个基因在两组中均下调,其中包括脂肪合成途径中的关键酶,如3-羟基-3-甲基戊二酸单酰辅酶A(MGA)合成酶、脂肪酸合成酶及硬脂酰辅酶A脱氢酶。另外,酪氨酸-3单加氧酶-色氨酸-5单加氧酶活化蛋白θ(YWHAZ)仅在肥胖伴2型糖尿病患者中上调,而在单纯性肥胖患者中不变,该基因所编码的蛋白在胰岛素信号转导途径中起着负调控的作用。结论:脂肪组织中脂肪生成下降、脂肪酸氧化增加可能是肥胖及2型糖尿病中胰岛素抵抗发生的共同原因,其它基因功能的改变也可能参与了肥胖及2型糖尿病的发生,而胰岛素信号转导受阻可能是肥胖向糖尿病转化的促进因素。对这些基因的进一步研究将有助于更好地了解肥胖及糖尿病的发生机制。  相似文献   

10.
代谢改变是癌细胞的特征之一。研究表明,低氧会使癌细胞的糖代谢发生改变,但是更详细的分子机制仍有待进一步研究。本研究利用转录物组测序技术(RNA-sequencing,RNA-seq)和生物信息学分析发现,低氧导致BT549细胞中334个基因和MDA-MB-231细胞中215个基因在转录水平的表达改变。这些表达变化的基因多与糖代谢相关。进一步分析RNA-seq数据并应用Western 印迹、酶活性检测和代谢产物定量测定的结果显示,低氧通过升高BT549细胞中葡萄糖转运蛋白1(GLUT1)和MDA-MB-231细胞中GLUT1和GLUT3的表达以增加葡萄糖的摄入;低氧使催化糖的无氧氧化途径几乎全部反应的酶都至少有一种同工酶或酶蛋白亚基,以及调节酶6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶3(PFKFB3)和4(PFKFB4)同工酶的表达增加来促进了糖的无氧氧化;低氧还通过增加调节丙酮酸脱氢酶激酶1(PDK1)和3(PDK3)同工酶基因的表达,以及降低关键酶异柠檬酸脱氢酶3(IDH3)同工酶、琥珀酸脱氢酶B亚基和D亚基的表达来减少糖的有氧氧化途径进行;低氧可能还增加磷酸戊糖途径的关键酶葡糖-6-磷酸脱氢酶、糖原合成途径的关键酶糖原合酶GYS1同工酶的表达以促进这2条途径的进行,而对糖异生和糖原分解代谢途径酶基因的表达影响较小。生物信息学分析乳腺癌组织样本在线数据库中糖代谢途径酶基因在转录水平表达结果与细胞研究结果基本一致。总之,该文系统分析了低氧对糖代谢6条代谢途径中全部酶以及2种重要调节酶的影响,可见低氧会通过改变这些酶的同工酶或亚基的基因表达使糖代谢途径进行重编程,这对进一步认识低氧环境下癌细胞糖代谢的分子机制具有一定的意义。  相似文献   

11.
植物萜类化合物的生物合成及应用   总被引:4,自引:0,他引:4  
萜类化合物是植物中广泛存在的一类代谢产物,在植物生长、发育过程中起重要作用。植物中的萜类化合物有2条合成途径,即甲羟戊酸途径和甲基赤藓糖醇磷酸途径。这2条途径中都存在一系列调控萜类化合物生成、结构和功能各异的酶。植物萜类化合物不仅在植物生命活动中起重要作用,而且具有重要的商业价值,被广泛用于工业、医药卫生等领域。  相似文献   

12.
生长素合成途径的研究进展   总被引:5,自引:0,他引:5  
生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素, 参与植物生长发育的许多过程。植物和一些侵染植物的病原微生物都可以通过改变生长素的合成来调节植株的生长。吲哚-3-乙酸(IAA)是天然植物生长素的主要活性成分。近年来, 随着IAA生物合成过程中一些关键调控基因的克隆和功能分析, 人们对IAA的生物合成途径有了更加深入的认识。IAA的生物合成有依赖色氨酸和非依赖色氨酸两条途径。依据IAA合成的中间产物不同, 依赖色氨酸的生物合成过程通常又划分成4条支路: 吲哚乙醛肟途径、吲哚丙酮酸途径、色胺途径和吲哚乙酰胺途径。该文综述了近几年在IAA生物合成方面取得的新进展。  相似文献   

13.
过去认为植物中只有一条从二酰甘油到三酰甘油的合成途径。近年来,在一些植物体内又发现了从二酰甘油到三酰甘油合成的两条新途径。该文介绍这两条新途径及其意义。  相似文献   

14.
力复霉素前体甲基丙二酰CoA合成途径的研究   总被引:5,自引:1,他引:4  
力复霉素合成的碳前体之一(2R)—甲基丙二酰CoA至少可以有三条酶学合成途径。三条途径中的关键酶分别为甲基丙二酰CoA转羧基酶、丙二酰CoA羧化酶、甲基丙二酰CoA变位酶和甲基丙二酰CoA消旋酶。通过比较各个酶活性的时间进程和力复霉素合成时间的相关性,以及各个酶的底物亲合力,对它们在地中海拟无枝酸菌(Amycolatopsis mediterranei)甲基丙二酰CoA合成中的贡献作了排序,发现甲基丙二酰CoA变位酶途径是主要负责酶系。但是各个途径的贡献排序并不是固定不变的,能受到环境因素的调控,丙酸盐的加入将抑制甲基丙二酰CoA变位酶活力,而使得甲基丙二酰CoA转羧基酶成为主要酶系。甲基丙二酰CoA合成途径的多样性有助于细胞对环境变化的灵活反应。此外,对各个酶的调控特性也进行了研究。  相似文献   

15.
构建了包含虾青素合成途径的小球藻代谢网络模型,集成文献报道同位素标定的小球藻代谢通量数据,估算了胞内代谢通量分布。在正常和缺氮培养条件下,虾青素的代谢通量分别为0.38和0.35。计算得到基元模式共640条,通过最大熵原理算法求取了正常培养和缺氮培养条件下的基元模式概率。存在4条关键基元模式,在2种培养条件下,其基元模式概率之和分别为60.95%和77.53%。虾青素的最大理论合成产率为11.27%,但是这4条关键基元模式并不包括虾青素的合成反应。  相似文献   

16.
植物源挥发性有机物的生态意义(综述)   总被引:1,自引:0,他引:1  
植物释放的挥发性有机气体(volatile organic compounds, VOCs)在对流层大气中通过一系列氧化还原反应,改变大气的化学组成,对臭氧合成、一氧化碳生成、甲烷氧化等有重要作用,其氧化物质对区域乃至全球的环境和气候都产生一定的影响。本文综述植物释放的VOCs对大气化学、温室效应、光化学烟雾的影响;介绍VOCs释放机制、合成途径及排放速率;对今后研究方向和大面积种植林木、城市绿化提出建议。  相似文献   

17.
长链多不饱和脂肪酸(long chain polyunsaturated fatty acid,LCPUFA)对维持人体健康具有重要作用,对其需求逐年增加,但是由于环境污染与渔业资源的下滑,有限的鱼油资源越来越不能满足人们需求。运用现代生物技术人们已相继分离了多个LCPUFA合成相关基因,并阐明了多条LCPUFA合成代谢途径。通过转基因技术在高等植物中成功合成了对人体健康十分重要的长链多不饱和脂肪酸,尤其是二十碳五烯酸(EPA),二十二碳六烯酸(DHA)。综述了LCPUFA的合成途径及转基因研究的最新进展,分析合成LCPUFA存在的问题及解决方法,并对未来多不饱和脂肪酸EPA,DHA的基因工程研究进行展望。  相似文献   

18.
植物体内一氧化氮合成途径研究进展   总被引:1,自引:0,他引:1  
一氧化氮(NO)作为一种气体信号分子,在植物生理过程中发挥重要作用,它参与调节植物的生长、发育及对外界环境的应激反应.植物体内主要通过酶催化途径和非酶催化途径合成NO.酶催化途径合成NO的主要酶包括一氧化氮合酶(nitric oxide synthase,NOS)和硝酸还原酶(nitrate reductase,NR),以及在某些植物的特定组织或器官或在特殊环境条件下存在的一氧化氮氧化还原酶(nitric oxide oxidoreductase,Ni-NOR)和黄嘌呤氧化还原酶(xanthine oxidoreductase,XOR).非酶催化合成途径主要是在酸性和还原剂存在条件下将亚硝酸盐还原成NO.该文主要结合研究方法,综述了植物体内NO合成途径的研究进展,为植物体内NO信号的作用机理的深入研究提供信息资料.  相似文献   

19.
目的:用计算机重构乙醇合成途径,为合成生物燃料乙醇提供理论依据。方法:利用KEGG反应、化合物数据提取反应等式,过滤掉42个通用代谢物参与的反应,然后利用剩下的反应构建反应矩阵;利用广度优先搜索算法在反应矩阵中搜索生成乙醇的代谢途径。结果:计算机重构了23 108条乙醇合成途径,以大肠杆菌作为产乙醇基因工程菌为例,通过限制改构菌整合的关键酶数目,分别得到了78条以酒精O-乙酰基转移酶为关键酶的乙醇合成通路和89条以丙酮酸脱羧酶和乙醇脱氢酶为关键酶的乙醇合成通路,并构建了相应的乙醇合成网络图,标注每个反应的酶及编码该酶的基因。结论:通过计算机方法重构了多种乙醇合成途径,可以为利用微生物工业化生产乙醇提供理论依据。  相似文献   

20.
【目的】致病型问号钩端螺旋体(问号钩体, Leptospira interrogans)和腐生型双曲钩体(L. biflexa)能够大量合成菌体内贮藏物, 这可能是钩体在营养贫瘠环境中长时间存活的主要原因之一。本研究对钩体聚Beta羟基丁酸(PHB)贮藏物进行定性定量测定, 通过基因组分析补充定义PHB合成主要功能基因, 并采用分子生物学方法初步证明PHB合成途径的完整性, 为进一步研究PHB合成与钩体抗逆能力的关系奠定基础。【方法】采用脂类特异性尼罗红染色法和浓硫酸氧化-紫外分光光度计测定法, 对问号钩体和双曲钩体的PHB贮藏物进行定性定量测定; 采用生物信息学方法(BLAST和InterProscan/InterPro2Go), 通过同源性分析和功能结构域搜索寻找钩体基因组中的PHB合成相关基因; 最后采用克隆测序和定量RT-PCR技术检测相关基因表达情况, 初步验证生物信息学预测结果。【结果】尼罗红染色和氧化后比色定量实验证明钩体合成细菌常见贮藏物PHB, 问号钩体合成量为菌体干重的42%?45%, 双曲钩体合成量为64%?68%。尽管已公布的多个钩体基因组中均没有定义完整的PHB合成途径, 但本研究通过综合生物信息学分析, 在问号钩体和双曲钩体中鉴定了PHB合成途径的主要功能基因(phbC)。克隆测序和定量RT-PCR证实钩体转录表达大部分PHB合成相关基因(phbA/B/C), 说明钩体内该生物途径基本完整, 且部分高水平表达基因可能是钩体主要的PHB合成相关基因。【结论】问号钩体和双曲钩体均可合成PHB贮藏物, 且具有基本完整的PHB合成生物途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号