首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.  相似文献   

6.
7.
8.
9.
10.
Clostridium botulinum synthesizes a potent neurotoxin (BoNT) which associates with non-toxic proteins (ANTPs) to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs) and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes) have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs.  相似文献   

11.
对首次自E型肉毒中毒食品中分离到的一株神经毒素原性酪酸梭菌(LCL155)所产生的神经毒素,同E型肉毒梭菌(E153)所产生的神经毒素进行了精制及特性比较,发现(1)两菌神经毒素的分子量,Native-PAGE测试均为320kDa;SDS-PAGE测试则均为147kDa,非毒性非血凝素部分均为128kDa;用胰蛋白酶激活神经毒素后发现两菌神经毒素均由分子量为103kDa的H链和48kDa的L链组成。(2)两菌神经毒素柱层析图像基本一致,但在菌体毒素提取效果及精制效果诸方面,分离的酪酸梭菌却都较差。(3)胰蛋白酶激活试验表明:两菌神经毒素达到最大毒力所需激活时间不等。在相同温度下,分离的酪酸梭菌毒素只需5min,而E型肉毒梭菌毒素却需30min,提示两菌神经毒素激活动力学上存在差异。(4)琼脂双扩散试验结果表明两菌神经毒素的抗原性是一致的,没有发现沉淀线呈交叉或部分交叉现象。  相似文献   

12.
A Gram positive, motile, rod-shaped, strictly anaerobic bacterium isolated from intestine of decaying fish was identified as Clostridium sp. RKD and produced a botulinum type B-like neurotoxin as suggested by mouse bioassay and protection with anti botulinum antibodies. The neurotoxicity was functionally characterized by the phrenic nerve hemi-diaphragm assay. Phylogenetic analysis based on 16S rDNA sequence, placed it at a different position from the reported strains of Clostridium botulinum. The strain exhibited differences from both Clostridium botulinum and Clostridium tetani with respect to morphological, biochemical and chemotaxonomic characteristics. Botulinum group specific and serotype specific primers amplified the DNA fragments of 260 and 727 bp, respectively, indicating presence of botulinum type 'B' toxin gene. Sequence of nearly 700 bp amplified using primers specific for botulinum neurotoxin type B gene, did not show any significant match in the database when subjected to BLAST search.  相似文献   

13.
14.
Primers designed to conserved regions of botulinum and tetanus clostridial toxins were used to amplify DNA fragments from non-proteolytic Clostridium botulinum type F (202F) DNA using polymerase chain reaction technology. The fragments were cloned and the complete nucleotide sequence of the gene encoding type F toxin determined. Analysis of the nucleotide sequence demonstrated the presence of an open frame encoding a protein of 1274 amino acids, similar to other botulinum neurotoxins. Upstream of the toxin gene is the end of an open reading frame which encodes the C-terminus of a protein with homology to non-toxic-non-hemagglutinin component of type C progenitor toxin.  相似文献   

15.
16.
17.
Chromosomal DNA was extracted from toxigenic Clostridium butyricum strain BL6340 isolated from a case of infant botulism. After digestion by EcoRI, a DNA fragment of about 1 kbp was cloned into Escherichia coli using lambda gt11, and was subcloned into pUC118. The E. coli cells transformed with this cloned fragment produced a 33 kDa protein which reacted with monoclonal antibodies recognizing the light chain (Lc) component of botulinum type E toxin. The nucleotide sequence of the cloned fragment was determined. The sequence was similar to that from botulinum type E toxin gene fragments previously determined by our laboratory (strains Mashike, Otaru and Iwanai). Several highly homologous sequences among the botulinum type A, C, E, butyricum and tetanus toxin genes were found in both translated and untranslated regions. These results suggest that the toxin gene of C. butyricum may have evolved by transfer from C. botulinum.  相似文献   

18.
Comparison of genes encoding type F botulinum neurotoxin progenitor complex in strains of proteolytic Clostridium botulinum strain Langeland, nonproteolytic Clostridium botulinum strain 202F, and Clostridium barati strain ATCC 43256 reveals an identical organization of genes encoding a protein of molecular mass of approx. 47 kDa (P-47), nontoxic-nonhemagglutinin (NTNH) and botulinum toxin (BoNT). Although homology between the protein components of the complexes encoded by these different species all producing botulinum neurotoxin type F is considerable (approx. 69–88% identity), exceptionally high homology is observed between the C-termini of the P-47s (approx. 96% identity) and the NTNHs (approx. 94% identity) encoded by Clostridium botulinum type F strain Langeland and Clostridium botulinum type A strain Kyoto. Such a region of extremely high sequence identity is strongly indicative of recombination in these strains synthesizing botulinum neurotoxins of different antigenic types. Received: 13 April 1998 / Accepted: 9 May 1998  相似文献   

19.
Until recently, all clostridia producing neurotoxins able to cause paralysis symptomatic of botulism were deemed to be Clostridium botulinum. Defining Cl. botulinum on the basis of this single phenotypic trait has resulted in the species encompassing metabolically very diverse organisms, and four distinct phenotypic groups are recognized within this taxon (designated groups I-IV). Nucleic acid hybridization and 16S ribosomal RNA sequencing studies have revealed the presence of four phylogenetically distinct lineages within the species, which correlate with these phenotypic divisions. In addition to marked phenotypic and genotypic heterogeneity between groups, the taxonomy of the species is further complicated by the existence of strains which are closely related, if not genetically identifiable, to members of each Cl. botulinum group, but are non-toxigenic. Furthermore, strains of species other than Cl. botulinum (viz. Cl. baratii, Cl. butyricum) have been found which express botulinum neurotoxin (BoNT). Great advances have been made in recent years in elucidating the nucleotide sequences of genes encoding the various BoNT antigenic types (A through to G). Genealogical trees derived from BoNTs show marked discordance with those depicting 'natural' relationships inferred from 16S rRNA and phenotypic clusters, and strong evidence exists for BoNT gene transfer between some groups of Cl. botulinum (e.g. groups I and II), and with non-botulinum species. Botulinum neurotoxin is produced by Cl. botulinum as a non-covalently bound progenitor toxin complex of two or more protein components. Information on the evolutionary histories of the various non-toxic progenitor proteins is currently limited, although there is evidence of gene recombination. In particular, chimera-like or mosaic non-toxic-non-haemagglutinins (NTNH) genes in group I Cl. botulinum have been described, and it is now apparent that the phylogeny of the NTNHs is not going to 'mirror' that of botulinal neurotoxins, although their genes are physically contiguous. In this article, the current state of knowledge of the phylogenetics of the species Cl. botulinum and its neurotoxins is reviewed, and a view is presented that a nomenclature based rigidly on BoNT production is no longer tenable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号