首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oviduct implants from quails which were primarily stimulated in vivo by estrogen so as to induce ciliogenesis in some epithelial cells were cultured in vitro in the presence or absence of colchicine or nocodazole. After 24 or 48 hr of culture, implants were examined by transmission and scanning electron microscopy to determine drug-induced alterations in ciliogenesis. After 24 hr of 10(-5) M colchicine treatment, the formation of basal bodies was totally inhibited, though the precursor material of generative complexes was unchanged. The inhibitory effect was not reversed when colchicine was removed in a 24 hr recovery culture. Treatment with 10(-6) M nocodazole for 24 hr, partially inhibited the assembly of basal bodies, which exhibited altered morphology. The assembly of basal bodies was restored during the 24 hr recovery period, after removal of nocodazole. Colchicine and nocodazole did not prevent polarized migration towards the apical surface of basal bodies formed prior to drug treatment. They anchored to the plasma membrane, but the formation of cilia was strongly disturbed in the presence of the drug. Numerous cells possessed anchored basal bodies which failed to induce the formation of cilia. The elongation of cilia was inhibited, as seen by their abnormal capping structure. In the enlarged tip, microtubules diverged. In contrast, these very short cilia possessed a mature ciliary necklace which was constructed during drug treatment. Differentiation of this membrane ciliary structure appeared to be unrelated to axoneme growth.  相似文献   

2.
Summary The effects of cytochalasin D (CD) were studied by scanning (SEM) and transmission (TEM) electron-microscopic examination at different stages of ciliary differentiation in epithelial cells of quail oviduct. Immature quails were prestimulated by estradiol benzoate injections to induce ciliogenesis in the undifferentiated oviduct. After 24 h of CD culture, SEM study revealed inhibition of ciliogenesis and dilation of the apex of non-ciliated cells. TEM study showed that 2 h of CD treatment produced dilation of lateral intercellular spaces, after 6 h of treatment, this resulted in intracellular macrovacuolation. Vacuoles were surrounded by aggregates of dense felt-like material. CD also induced the disappearance of microvilli, and rounding of the apical surface of undifferentiated cells and those blocked in ciliogenesis. Centriologenesis was not inhibited by CD; basal bodies assembled in generative complexes in the supranuclear region after 24 h of treatment. However, the migration of mature basal bodies towards the apical surface was impaired. Instead, they anchored onto the membrane of intracellular vacuoles; growth of cilia was induced in the vacuole lumen. Cilium elongation was disturbed, giving abnormally short cilia with a dilated tip; microtubules failed to organize correctly.  相似文献   

3.
The number of basal bodies and cilia along pole-to-pole ciliary rows was enumerated in Tetrahymena thermophila cells sampled during the rapid-exponential phase of culture growth in three different media that supported generation times ranging from 2 to 4 hr. The time required for oral development was nearly constant in the three media, and thus most of the differences in generation time were accounted for by differences in the interval prior to the onset of oral development (stage 0), which ranged from 50% of the generation time in the “poorest” medium to 20% in the “richest.” There was very little increase in number of basal bodies and of cilia along ciliary rows during stage 0, irrespective of the duration of this stage. The bulk of the increase took place during oral development, following a time course suggestive of coordination wth oral development. The same temporal pattern of increase was found in several ciliary rows, although the proportion of basal bodies that were ciliated differed among rows. There is no simple relationship between the number of basal bodies along ciliary rows and cell length, surface area, or volume. However, a large and constant proportion of the total division-to-division cell growth took place during the interval prior to the onset of oral development, suggesting that an ensemble of developmental events, including oral development and an associated activation of the remainder of the cell surface, may be triggered by attainment of a threshold cell size.  相似文献   

4.
Development of cilia in embryos of the turbellarian Macrostomum   总被引:3,自引:3,他引:0  
Seth Tyler 《Hydrobiologia》1981,84(1):231-239
Electron microscopy of Macrostomum hystricinum raised in culture shows that ciliogenesis in the worm's epidermal blastomeres begins in embryos 39–41 h old with kinetosomal and de novo genesis of presumptive basal bodies, which are morphologically distinguishable from centrioles of the mitotic apparatus, and proceeds by the migration of basal bodies to the apical plasma membrane of the cells and their production there of ciliary axonemes by an age of 51–53 h when the bastomeres emerge between yolk cells on the embryo's surface. Ciliogenesis continues throughout development with the addition of cilia virtually one by one to the expanding epidermal cells' surfaces. At no time in ciliogenesis are stages seen that might show derivation of these multiciliated cells from the primitive monociliated cell type presumably present in the ancestors of the Turbellaria.  相似文献   

5.
Actin microfilaments were localized in quail oviduct ciliated cells using decoration with myosin subfragment S1 and immunogold labeling. These polarized epithelial cells show a well developed cytoskeleton due to the presence of numerous cilia and microvilli at their apical pole. Most S1-decorated microfilaments extend from the microvilli downward towards the upper part of the ciliary striated rootlets with which they are connected. From the microvillous roots, a few microfilaments connect the proximal part of the basal body or the basal foot associated with the basal body. Microfilament polarity is shown by S1 arrowheads pointing away from the microvillous tip to the cell body. Furthermore, short microfilaments are attached to the plasma membrane at the anchoring sites of basal bodies and run along the basal body. The polarity of these short microfilaments is directed from the basal body anchoring fibers downward to the cytoplasm. At the cell periphery, microfilaments from microvillous roots and ciliary apparatus are connected with those of the circumferential actin belt which is associated with the apical zonula adhaerens. Together with the other cytoskeletal elements, the microfilaments increase ciliary anchorage and could be involved in the coordination of ciliary beating. Moreover, microvilli surrounding the cilia probably modify ciliary beating by offering resistance to cilium bending. The presence of microvilli could explain the fact that mainly the upper part of the cilia appanars to be involved in the axonemal bending in metazoan ciliated cells.  相似文献   

6.
An electron microscopic study of the ciliary epithelium of respiratory tracts was carried out in children (members of the same family) with Kartagener syndrome, which is a variant of ciliary dyskinesia. It was shown that in the case of both mobile cilia and ciliary dyskinesia in man, centrioles are formed during formation of the ciliary basal bodies predominantly de novo, involving deuterosomes. A wide spectrum of pathological changes was described in literature, such as the absence of dynein arms in the axoneme and disorganization of axoneme structure. In addition to these changes in the ciliary system, we found integration of several ciliary axonemes by the same plasma membrane, running of microtubules from the plasma membrane as bundles, different orientation of basal legs, etc.  相似文献   

7.
Basal bodies nucleate, anchor, and organize cilia. As the anchor for motile cilia, basal bodies must be resistant to the forces directed toward the cell as a consequence of ciliary beating. The molecules and generalized mechanisms that contribute to the maintenance of basal bodies remain to be discovered. Bld10/Cep135 is a basal body outer cartwheel domain protein that has established roles in the assembly of nascent basal bodies. We find that Bld10 protein first incorporates stably at basal bodies early during new assembly. Bld10 protein continues to accumulate at basal bodies after assembly, and we hypothesize that the full complement of Bld10 is required to stabilize basal bodies. We identify a novel mechanism for Bld10/Cep135 in basal body maintenance so that basal bodies can withstand the forces produced by motile cilia. Bld10 stabilizes basal bodies by promoting the stability of the A- and C-tubules of the basal body triplet microtubules and by properly positioning the triplet microtubule blades. The forces generated by ciliary beating promote basal body disassembly in bld10Δ cells. Thus Bld10/Cep135 acts to maintain the structural integrity of basal bodies against the forces of ciliary beating in addition to its separable role in basal body assembly.  相似文献   

8.
Ciliated cysts in the human uterine tube epithelium were investigated with the transmission electron microscope. The cysts were about 3-9 microns in diameter and were provided with many ciliary apparatuses and microvilli. Degenerative changes of these cilia, such as electron-dense round or irregular bodies and amorphous substance, were observed in many cysts, but complete disappearance of ciliary structures was not detected in any ciliated cysts. The ciliated cysts were mostly observed in basal cells and were occasionally found in ciliated cells bordering the tubal lumen. In the basal cells, these cysts distended with the increase in degenerated cilia. Distended ciliated-cyst-containing cells became exposed directly to the tubal lumen. U- or reverse omega-shaped deep indentations of the apical surface of ciliated cells confirmed the opening of ciliated cysts into the lumen. It was suggested that the ciliated cysts result from the premature differentiation of basal cells or disturbed migration of centrioles in ciliogenic cells.  相似文献   

9.
The locomotor behavior of Paramecium depends on the ciliary beat direction and beat frequency. Changes in the ciliary beat are controlled by a signal transduction mechanism that follows changes in the membrane potential. These events take place in cilia covered with a ciliary membrane. To determine the effects of second messengers in the cilia, cortical sheets were used with intact ciliary membrane as a half-closed system in which each cilium is covered with a ciliary membrane with an opening to the cell body. Cyclic nucleotides and their derivatives applied from an opening to the cell body affected the ciliary beat. cAMP and 8-Br-cAMP increased the beat frequency and the efficiency of propulsion and acted antagonistically to the action of Ca(2+). cGMP and 8-Br-cGMP increased the efficiency of propulsion accompanying clear metachronal waves but decreased the beat frequency. These results indicate that the cyclic nucleotides affect target proteins in the ciliary axonemes surrounded by the ciliary membrane without a membrane potential and increase the efficiency of propulsion of the ciliary beat. In vitro phosphorylation of isolated ciliary axonemes in the presence of cyclic nucleotides and their derivatives revealed that the action of cAMP was correlated with the phosphorylation of 29-kDa and 65-kDa proteins and that the action of cGMP was correlated with the phosphorylation of a 42-kDa protein.  相似文献   

10.
Patterns of basal body addition in ciliary rows in Tetrahymena   总被引:2,自引:0,他引:2       下载免费PDF全文
Most naked basal bodies visualized in protargol stains on the surface of Tetrahymena are new basal bodies which have not yet developed cilia. The rarity of short cilia is explained by the rapid development of the ciliary shaft once it begins to grow. The high frequency of naked basal bodies (about 50 percent) in log cultures indicates that the interval between assembly of the basal body and the initiation of the cilium is long, approximately a full cell cycle. Naked basal bodies are more frequent in the mid and posterior parts of the cell and two or more naked basal bodies may be associated with one ciliated basal body in these regions. Daughter cells produced at division are apparently asymmetric with respect to their endowment of new and old organelles.  相似文献   

11.
Cilia are conserved, microtubule-based cell surface projections that emanate from basal bodies, membrane-docked centrioles. The beating of motile cilia and flagella enables cells to swim and epithelia to displace fluids. In contrast, most primary cilia do not beat but instead detect environmental or intercellular stimuli. Inborn defects in both kinds of cilia cause human ciliopathies, diseases with diverse manifestations such as heterotaxia and kidney cysts. These diseases are caused by defects in ciliogenesis or ciliary function. The signaling functions of cilia require regulation of ciliary composition, which depends on the control of protein traffic into and out of cilia.  相似文献   

12.
W L Dentler 《Tissue & cell》1977,9(2):209-222
Cytochemical localization of ATPase activities in cilia and basal bodies of Tetrahymena pyriformis revealed a number of possible sites of ATPases. In basal bodies, reaction product was localized on the periphery of basal body microtubules, in the core of the B-microtubules, on the dense basal body core, and on the basal plate; some reaction product was associated with the postciliary and basal microtubules. In the cilium, reaction product was associated with the ciliary membrane, the basal granule, the periphery of the outer doublet microtubules, in the core of the B-microtubules, and on the arms and either the central microtubules or the radial spoke heads. Reaction product deposition required ATP and either Ca2+ or Mg2+ or ADP and Mg2+. When incubated in the presence of ATP and Na+, reaction product was only found at the base of the cilium in the region of the ciliary necklace. Implications of the various sites of activity are discussed with respect to possible mechanisms of ciliary motility.  相似文献   

13.
SYNOPSIS. The adult Tokophrya infusionum does not possess cilia, but has 20–30 barren basal bodies arranged in 6 short rows adjacent to the contractile vacuole pore. During reproduction, which is by internal budding, the contractile vacuole sinks into the parent along with the invaginating membranes that form the embryo and the wall of the brood pouch. The 6 rows of basal bodies radiate away from the pore and elongate to form 5 long ciliary rows, that encircle the anterior half of the embryo, and 1 short row at the posterior end. The contractile vacuole pore, along with several barren basal bodies, remains in the parent when the embryo is completed. The pore rises to the surface when the embryo is born. New basal bodies are then formed in the parent to replace those which were incorporated into the embryo, and formation of another embryo may begin. The cilia of the embryo are partially resorbed 10 min after the start of metamorphosis, with depolymerization of the ciliary microtubules. Later, the cilia and most of the basal bodies disappear completely, except for a group of barren basal bodies near the embryo's contractile vacuole pore, which form 6 rows and serve as an anlage for the basal bodies and cilia that arise during embryogenesis. There is, therefore, an organized infraciliature in Suctoria throughout their life cycle, and a distinct continuity of basal bodies across the generations.  相似文献   

14.
In differentiated human cells, primary cilia fulfill essential functions in converting mechanical or chemical stimuli into intracellular signals. Formation and maintenance of cilia require multiple functions associated with the centriole-derived basal body, from which axonemal microtubules grow and which assembles a gate to maintain the specific ciliary proteome. Here we characterize the function of a novel centriolar satellite protein, synovial sarcoma X breakpoint–interacting protein 2 (SSX2IP), in the assembly of primary cilia. We show that SSX2IP localizes to the basal body of primary cilia in human and murine ciliated cells. Using small interfering RNA knockdown in human cells, we demonstrate the importance of SSX2IP for efficient recruitment of the ciliopathy-associated satellite protein Cep290 to both satellites and the basal body. Cep290 takes a central role in gating proteins to the ciliary compartment. Consistent with that, loss of SSX2IP drastically reduces entry of the BBSome, which functions to target membrane proteins to primary cilia, and interferes with efficient accumulation of the key regulator of ciliary membrane protein targeting, Rab8. Finally, we show that SSX2IP knockdown limits targeting of the ciliary membrane protein and BBSome cargo, somatostatin receptor 3, and significantly reduces axoneme length. Our data establish SSX2IP as a novel targeting factor for ciliary membrane proteins cooperating with Cep290, the BBSome, and Rab8.  相似文献   

15.
In quail oviduct epithelium, as in all metazoan and protozoan ciliated cells, cilia beat in a coordinated cycle. They are arranged in a polarized pattern oriented according to the anteroposterior axis of the oviduct and are most likely responsible for transport of the ovum and egg white proteins from the infundibulum toward the uterus. Orientation of ciliary beating is related to that of the basal bodies, indicated by the location of the lateral basal foot, which points in the direction of the active stroke of ciliary beating. This arrangement of the ciliary cortex occurs as the ultimate step in ciliogenesis and following the oviduct development. Cilia first develop in a random orientation and reorient later, simultaneously with the development of the cortical cytoskeleton. In order to know when the final orientation of basal bodies and cilia is determined in the course of oviduct development, microsurgical reversal of a segment of the immature oviduct was performed. Then, after hormone-induced development and ciliogenesis, ciliary orientation was examined in the inverted segment and in normal parts of the ciliated epithelium. In the inverted segment, orientation was reversed, as shown by a video recording of the direction of effective flow produced by beating cilia, by the three-dimensional bending forms of cilia immobilized during the beating cycle and screened by scanning electron microscopy, and by the position of basal body appendages as seen in thin sections by transmission electron microscopy. These results demonstrate that basal body and ciliary orientation are irreversibly determined prior to development by an endogenous signal present early in the cells of the immature oviduct, transmitted to daughter cells during the proliferative phase and expressed at the end of ciliogenesis.  相似文献   

16.
《The Journal of cell biology》1987,105(6):2855-2859
The ciliated protozoan Oxytricha fallax possesses multiple highly localized clusters of basal bodies and cilia, all of which are broken down and rebuilt during prefission morphogenesis-with one major exception. The adoral zone of membranelles (AZM) of the ciliate oral apparatus contains approximately 1,500-2,000 basal bodies and cilia, and it is the only compound ciliary structure that is passed morphologically intact to one daughter cell at each cell division. By labeling all proteins in cells, and then picking the one daughter cell possessing the original labeled AZM, we could then evaluate whether or not the ciliary proteins of the AZM were diluted (i.e., either by degradation to constituent amino acids or by subunit exchange) during cell division. Autoradiographic analysis demonstrated that the label was highly conserved in the AZM (i.e., we saw no evidence of turnover), and electrophoretic data illustrate that at least one of the proteins of the AZM is tubulin. We, therefore, conclude that for at least some of the ciliary and basal body proteins of Oxytricha fallax, AZM morphological conservation is essentially equivalent to molecular conservation.  相似文献   

17.
An electron microscopic study of the ciliary epithelium of respiratory tracts was carried out in children (members of the same family) with Kartagener syndrome, which is a variant of ciliary dyskinesia. It was shown that in the case of both mobile cilia and ciliary dyskinesia in man, centrioles are formed during formation of the ciliary basal bodies predominantly de novo, involving deuterosomes. A wide spectrum of pathological changes was described in literature, such as the absence of dynein arms in the axoneme and disorganization of axoneme structure. In addition to these changes in the ciliary system, we found integration of several ciliary axonemes by the same plasma membrane, running of microtubules from the plasma membrane as bundles, different orientation of basal legs, etc.__________Translated from Ontogenez, Vol. 36, No. 3, 2005, pp. 190–198.Original Russian Text Copyright © 2005 by Domaratskii, Uvakina, Volkov, Onishchenko.  相似文献   

18.
Divalent cation affinity sites in Paramecium aurelia   总被引:5,自引:5,他引:0       下载免费PDF全文
Sites with high calcium affinity in Paramecium aurelia were identified by high calcium (5 mM) fixation and electron microscope methods. Electron-opaque deposits were observed on the cytoplasmic side of surface membranes, particularly at the basal regions of cilia and trichocyst-pellicle fusion sites. Deposits were also observed on some smooth cytomembranes, within the axoneme of cilia, and on basal bodies. The divalent cations, Mg2+, Mn2+, Sr2+, Ni2+, Ba2+, and Zn2+, could be substituted for Ca2+ in the procedure. Deposits were larger with 5 mM Sr2+. Ba2+, and Mn2+ at ciliary transverse plates and the terminal plate of basal bodies. Microprobe analysis showed that Ca and C1 were concentrated within deposits. In some analyses, S and P were detected in deposits. Also, microprobe analysis of 5 mM Mn2+-fixed P. aurelia showed that those deposits were enriched in Mn and C1 and sometimes enriched in P. Deposits were seen only when the ciliates were actively swimming at the time of fixation. Locomotory mutants having defective membrane Ca-gating mechanisms and ciliates fixed while exhibiting ciliary reversal showed no obvious differences in deposition pattern and intensity. Possible correlations between electron-opaque deposits and the locations of intramembranous particles seen by freeze-fracture studied, as well as sites where fibrillar material associate with membranes are considered. The possibility that the action sites of calcium and other divalent cations were identified is discussed.  相似文献   

19.
本文应用光镜和电镜组化方法,对胚胎晚期至生后早期的 Wistar 大鼠气管上皮细胞Ca~(2+)-ATPase 的动态变化进行了观察。结果证实在胚胎期气管上皮细胞侧面膜和表面膜及纤毛细胞的纤毛干处有 Ca~(2+)-ATPase 活性反应产物,提示胚胎期气管上皮细胞之间可能已存在与气管上皮细胞分化、发育密切相关的钙;在生后早期,纤毛细胞的基粒和纤毛小根处出现活性 Ca~(2+)-ATPase,表明生后早期已出现纤毛运动,其对廓清气道具有重要意义。  相似文献   

20.
Centrioles and basal bodies are fascinating and mysterious organelles. They interconvert and seem to be crucial for a wide range of crucial cellular processes. However, intense research over the last years suggested that centrioles/basal bodies are essential mainly for the generation of cilia. Although a neglected organelle over a long time, interest in the primary cilia was recently rekindled by the notion that they are affected in a number of human diseases. Cilia formation is an intricate process that starts with the transformation of centrioles to basal bodies and their docking to the apical plasma membrane. Disturbance of basal body formation thus might cause ciliopathies. This review focuses on the formation of basal bodies in mammalian cells with an emphasis on basal bodies sprouting a primary cilium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号