首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S M Zurawski  F Vega  Jr  B Huyghe    G Zurawski 《The EMBO journal》1993,12(7):2663-2670
Interleukin-4 (IL-4) and interleukin-13 (IL-13) are two cytokines that are secreted by activated T cells and have similar effects on monocytes and B cells. We describe a mutant form of human interleukin-4 (hIL-4) that competitively antagonizes both hIL-4 and human interleukin-13 (hIL-13). The amino acid sequences of IL-4 and IL-13 are approximately 30% homologous and circular dichroism (CD) spectroscopy shows that both proteins have a highly alpha-helical structure. IL-13 competitively inhibited binding of hIL-4 to functional human IL-4 receptors (called hIL-4R) expressed on a cell line which responds to both hIL-4 and IL-13. Binding of hIL-4 to an hIL-4 responsive cell line that does not respond to IL-13, and binding of hIL-4 to cloned IL-4R ligand binding protein expressed on heterologous cells, were not inhibited by IL-13. hIL-4 bound with approximately 100-fold lower affinity to the IL-4R ligand binding protein than to functional IL-4R. The mutant hIL-4 antagonist protein bound to both IL-4R types with the lower affinity. The above results demonstrate that IL-4 and IL-13 share a receptor component that is important for signal transduction. In addition, our data establish that IL-4R is a complex of at least two components one of which is a novel affinity converting subunit that is critical for cellular signal transduction.  相似文献   

2.
As interleukin (IL)-13 and IL-4 play a major role in various diseases including asthma, allergy, and malignancies, it is desirable to generate a molecule that blocks the effects of both cytokines. We previously generated a human IL-13 mutant (IL-13E13K), which is a powerful antagonist of IL-13, blocking the biological activities of IL-13. We now show that IL-13E13K also competitively inhibits signaling and biological activities of IL-4 through type II and partially through type III IL-4 receptor (R) system. IL-13E13K completely blocked the IL-4-induced phosphorylation of STAT6 and IL-4-dependent protein synthesis in cells expressing type II and partially type III IL-4R but not type I IL- 4R. Consistent with the inhibition of biological activities, IL-13E13K inhibited IL-4 binding to type II IL-4R-expressing cells but not to type I IL-4R-expressing cells. The inhibition efficiency of IL-4 binding by IL-13E13K was relatively lower compared to wtIL-13 even though IL-13E13K bound to IL-13Ralpha1 positive cells with a similar affinity to wtIL-13. These results indicate that Glu13 in IL-13 associates with IL-4Ralpha, and mutation to lysine decreases its binding ability to IL-4Ralpha chain. IL-13E13K binds to IL- 13Ralpha1, which is shared by both IL-13R and IL-4R systems. Consequently, IL-13E13K inhibits IL-4 binding to these cells and prevents heterodimer formation between IL-13Ralpha1 and IL-4Ralpha chains. This interference by IL-13E13K blocks the biological activities of not only IL-13 but also partially of IL-4. Thus, IL-13E13K may be a useful agent for the treatment of diseases such as asthma, allergic rhinitis, and cancer, which are dependent on signaling through both IL-4 and IL-13 receptors.  相似文献   

3.
The mammalian bombesin receptor subfamily of G protein-coupled receptors currently consists of the gastrin-releasing peptide receptor (GRP-R), neuromedin B receptor, and bombesin receptor subtype 3. All three receptors contain a conserved aspartate residue (D98) at the extracellular boundary of transmembrane domain II and a conserved arginine residue (R309) near the extracellular boundary of transmembrane domain VII. To evaluate the functional role of these residues, site-directed GRP-R mutants were expressed in fibroblasts and assayed for their ability to both bind agonist and catalyze exchange of guanine nucleotides. Alanine substitution at GRP-R position 98 or 309 reduced agonist binding affinity by 24- and 56-fold, respectively, compared to wild-type GRP-R. Single swap GRP-R mutations either resulted in no receptor expression in the membrane (D98R) or the protein was not able to bind agonist (R309D). In contrast, the double swap mutation (D98R/R309D) had high-affinity agonist binding, reduced from wild-type GRP-R by only 6-fold. In situ reconstitution of urea-extracted membranes expressing either wild-type or mutant (D98A or R309A) GRP-R with G(q) indicated that alanine substitution greatly reduced G protein catalytic exchange compared to wild-type GRP-R. The D98R/R309D GRP-R had both a higher intrinsic basal activity and a higher overall catalytic exchange activity compared to wild-type; however, the wild-type GRP-R produced a larger agonist-stimulated response relative to the double swap mutant. Taken together, these data show that GRP-R residues D98 and R309 are critical for efficient coupling of GRP-R to G(q). Furthermore, our findings are consistent with a salt bridge interaction between these two polar and oppositely charged amino acids that maintains the proper receptor conformation necessary to interact with G proteins.  相似文献   

4.
Agonist-dependent activation of the alpha(1)-adrenergic receptor is postulated to be initiated by disruption of an interhelical salt-bridge constraint between an aspartic acid (Asp-125) and a lysine residue (Lys-331) in transmembrane domains three and seven, respectively. Single point mutations that disrupt the charges of either of these residues results in constitutive activity. To validate this hypothesis, we used site-directed mutagenesis to switch the position of these amino acids to observe, if possible, regeneration of the salt-bridge reverses that the constitutive activity of the single point mutations. The transiently expressed switch mutant receptor displayed an altered pharmacological profile. The affinity of selective alpha(1b)-adrenergic receptor antagonists for the switch mutant (D125K/K331D) was no different from the wild-type alpha(1b)-adrenergic receptor, suggesting that both receptors are maintaining similar tertiary structures in the cell membrane. However, there was a significant 4-6-fold decrease in the affinity of protonated amine receptor agonists and a 3-6-fold increase in the affinity of carboxylated catechol derivatives for the switch mutant compared with the wild-type alpha(1b)-adrenergic receptor. This pharmacology is consistent with a reversed charge at position 125 in transmembrane domain three. Interestingly, the ability of either a negatively or positively charged agonist to generate soluble inositol phosphates was similar for both types of receptors. Finally, the switch mutant (D125K/K331D) displayed similar basal signaling activity as the wild-type receptor, reversing the constitutive activity of the single point mutations (D125K and K331D). This suggests an ionic constraint has been reformed in the switch mutant analogous to the restraint previously described for the wild-type alpha(1b)-adrenergic receptor. These results strongly establish the disruption of an electrostatic interaction as an initial step in the agonist-dependent activation of alpha(1)-adrenergic receptors.  相似文献   

5.
6.
IL-1 signaling is mediated by the type I IL-1R (IL-1RI). The nonsignaling type II receptor has a regulatory function, since it reduces IL-1 effects by scavenging free IL-1 molecules. This regulatory function has been demonstrated only for the soluble form, released from the membrane receptor by action of specific proteases, but is still ill-defined for the membrane receptor itself. To assess the function of membrane IL-1RII, a modified IL-1RII cDNA was constructed, in which the cleavable domain was replaced with the corresponding uncleavable sequence of the epidermal growth factor receptor. The human keratinocyte line HaCaT, which does not express wild-type IL-1RII (wtIL-1RII), was stably transfected with this modified cDNA (unconventionally cleavable IL-1RII (uIL-1RII)). Cells transfected with uIL-1RII expressed the membrane form of IL-1RII, but were unable to produce the 60-kDa soluble receptor. Upon analysis of IL-1 responsiveness, parental HaCaT and vector-transfected cells (E27), expressing IL-1RI and the accessory chain IL-1R accessory protein, were responsive to IL-1. Conversely, cells overexpressing wtIL-1RII (811) or uIL-1RII (9D4) showed comparable reduction in responsiveness to both IL-1alpha (bound by membrane and soluble receptors) and IL-1beta (recognized by the membrane receptor only), suggesting that the membrane form of the IL-1RII is mainly responsible for IL-1 inhibition. In contrast with wtIL-1RII, uIL-1RII did not interact with IL-1R accessory protein. Thus, the membrane form of IL-1RII possesses strong IL-1-inhibitory activity, independent of sequestration of the accessory protein and circumscribed to its ligand sink function.  相似文献   

7.
Histamine has an important role in regulation of immune response which is mediated by differential expression of four distinct receptors, H1R-H4R. H1R and HR2 have previously been shown to be involved with modulation of lung inflammation. H4R is also expressed on inflammatory cells; therefore, we investigated the potential role of H4R in development of allergic asthma in a murine model. We determined that the H4R agonist 4-methylhistamine when delivered intratracheally before Ag challenge mitigated airway hyperreactivity and inflammation. This was associated with an increase in IL-10 and IFN-gamma, but not TGF-beta or IL-16, as well as a decrease in IL-13 in the bronchoalveolar lavage fluid. We also observed that H4R agonist instillation resulted in accumulation of FoxP3(+) T cells suggesting a direct effect on T regulatory cell recruitment. To investigate this further, we determined the in vitro effect of H4R stimulation on human T cell migration. The H4R agonist induced a 2- to 3-fold increase in T cell migration, similar to that seen for H1R agonists. Cells transmigrating to the H4R agonist, but not H1R, were skewed toward a CD4 cell expressing CD25 and intracellular FoxP3. H4R-responsive cells suppressed proliferation of autologous T cells, an effect that was dependent on IL-10 production. We conclude that H4R stimulation enriches for a regulatory T cell with potent suppressive activity for proliferation. These findings identify a novel function for H4R and suggest a potential therapeutic approach to attenuation of asthmatic inflammation.  相似文献   

8.
Primary human monocytes and the human monocytic cell line THP-1 were induced to express receptors for interleukin-1 alpha (IL-1 alpha) and IL-1 beta. Treatment of primary monocytes with dexamethasone resulted in a 10-fold increase in receptor number over untreated cells, to approximately 2,000 receptors/cell. Treatment of THP-1 cells with phorbol ester followed by prostaglandin E2 and dexamethasone resulted in the expression of approximately 30,000 receptors/cell. Competitive binding assays on THP-1 cells showed that both IL-1 alpha and IL-1 beta bind to the same receptor. The monocyte IL-1R is significantly smaller (63 kDa) than the T cell IL-1R (80 kDa) and is immunologically distinct. However, induction of monocytes and monocytic cell lines leads to the appearance of an abundant mRNA of approximately 5,000 bases which hybridizes to a cDNA probe from the T cell-type IL-1R. Sequence data obtained from a cDNA clone of this mRNA indicate that the message is identical to the T cell IL-1R mRNA throughout the coding region. A smaller mRNA, also homologous to the T cell IL-1R mRNA, accumulated in induced THP-1 cells and has a shorter 3'-untranslated region than the larger. Data are presented which suggest that neither form of this message encodes the 63-kDa IL-1R, but rather that this protein is the product of a separate nonhomologous mRNA.  相似文献   

9.
10.
Human interleukin-10 (hIL-10) is a pleiotropic cytokine that is able to suppress or activate cellular immune responses to protect the host from invading pathogens. Epstein-Barr virus (EBV) encodes a viral IL-10 (ebvIL-10) in its genome that has retained the immunosuppressive activities of hIL-10 but lost the ability to induce immunostimulatory activities on some cells. These functional differences are at least partially due to the ~1000-fold difference in hIL-10 and ebvIL-10 binding affinity for the IL-10R1·IL-10R2 cell surface receptors. Despite weaker binding to IL-10R1, ebvIL-10 is more active than hIL-10 in inducing B-cell proliferation. To explore this counterintuitive observation further, a series of monomeric and dimeric ebvIL-10·hIL-10 chimeric proteins were produced and characterized for receptor binding and cellular proliferation on TF-1/hIL-10R1 cells that express high levels of the IL-10R1 chain. On this cell line, monomeric chimeras elicited cell proliferation in accordance with how tightly they bound to the IL-10R1 chain. In contrast, dimeric chimeras exhibiting the highest affinity for IL-10R1 exhibited reduced proliferative activity. These distinct activity profiles are correlated with kinetic analyses that reveal that the ebvIL-10 dimer is impaired in its ability to form a 1:2 ebvIL-10·IL-10R1 complex. As a result, the ebvIL-10 dimer functions like a monomer at low IL-10R1 levels, which prevents efficient signaling. At high IL-10R1 levels, the ebvIL-10 dimer is able to induce signaling responses greater than hIL-10. Thus, the ebvIL-10 dimer scaffold is essential to prevent activation of cells with low IL-10R1 levels but to maintain or enhance activity on cells with high IL-10R1 levels.  相似文献   

11.
The residues located at the carboxyl terminus of helix D in interleukin-7 (IL-7) have previously been targeted as important for recruitment and binding to the gamma chain component of the IL-7 receptor (IL-7R). In this study, Trp 143 of helix D was mutated to His, Phe, Tyr and Pro and these mutants, along with a W143A mutant previously described, were studied to determine the effects on activation of DNA synthesis and binding affinity to IL-7R positive 2E8 cells. The W143F and W143Y mutants were similar to wild type IL-7 in their binding properties and retained 85% and 74% of their activating properties, respectively. In contrast, the W143H mutant possessed a lower binding affinity and a corresponding decrease in activation, the W143A mutant possessed an over 100-fold decreased binding affinity and some residual activation activity and the W143P mutant possessed a greatly decreased binding affinity and did not activate. These results strongly suggest an aromatic residue is required at position 143 for IL-7R binding and subsequent signal transduction.  相似文献   

12.
Zhou G  Roizman B 《Journal of virology》2005,79(9):5272-5277
Malignant glioma tumor cells in situ exhibit on their surfaces the interleukin 13 (IL-13) receptor designated IL13Ralpha2. To target herpes simplex virus 1 to this receptor, we constructed a recombinant virus (R5111) in which the known heparan sulfate binding sites in glycoproteins B and C were deleted and IL-13 was inserted into both glycoproteins C and D. We also transduced a baby hamster kidney cell line lacking the known viral receptors (J1-1) and Vero cells with a plasmid encoding IL13Ralpha2. The J1-1 derivative (J-13R) cell line is susceptible to and replicates the R5111 recombinant virus but not the wild-type parent virus. We report the following. (i) Expression of IL13Ralpha2 was rapidly lost from the surface of transduced cells grown in culture. The loss appeared to be related to ligands present in fetal bovine serum in the medium. None of the malignant glioma cell lines cultivated in vitro and tested to date exhibited the IL13Ralpha2 receptor. (ii) Soluble IL-13 but not IL-4 or IL-2 blocked the replication of R5111 recombinant virus in J-13R cells. (iii) The endocytosis inhibitor PD98059 blocked the replication in J1-1 cells of a mutant lacking glycoprotein D (gD-/-) but not the replication of R5111 in the J-13R cells. We conclude that R5111 enters cells via its interaction with the IL13Ralpha2 receptor in a manner that cannot be differentiated from the interaction of wild-type virus with its receptors.  相似文献   

13.
Several human interleukin-2 (IL-2) mutant proteins have been produced previously by site-directed mutagenesis and found to have different capacities to induce T-cell proliferative activity. In this study, the abilities of these IL-2 mutant proteins to activate natural killer cells and to induce interferon-gamma production have been evaluated, and the binding of these proteins to IL-2 receptors analyzed. Natural killer cell activation and interferon-gamma induction assays showed that the relative activities of IL-2 mutant proteins were consistent with their relative activities in T-cell proliferation assay. Receptor-binding studies showed that the activities of most proteins correlated well with their respective affinities for high-affinity IL-2 receptors on CTLL-2 cells. Interestingly, although the mutant protein with deletion of cysteine 125 (des-Cys125) was biologically less active than the protein with substitution of alanine for cysteine 105 (Ala105), both proteins exhibited similar affinity. Des-Cys125, like IL-2 and Ala105, also caused down-regulation of high-affinity IL-2 receptors. Binding studies on MLA-144, a cell line expressing mainly intermediate-affinity IL-2 receptors (IL-2R beta), however, showed that des-Cys125 had much lower affinity than Ala105. These results suggest that binding of IL-2 and mutant proteins to the IL-2R beta component of the high-affinity receptor is essential for the induction of biological effects.  相似文献   

14.
The secretin receptor is a member of a large family of G-protein-coupled receptors that recognize polypeptide hormone and/or neuropeptides. Charged, conserved residues might play a key role in their function, either by interacting with the ligand or by stabilizing the receptor structure. Of the four charged amino acids that are conserved in the whole secretin receptor family, D49 and R83 (in the N-terminal domain) were probably important for the secretin receptor structure: replacement of D49 by H or R and of R83 by D severely reduced both the maximal response to secretin and its potency. No functional secretin receptor could be detected after replacement of R83 by L. Mutation of D49 to E, A, or N had no effect or reduced 5-fold the potency of secretin. The highly conserved positive charges found at the extracellular ends of TM III (K194) and IV (R255) were important for the secretin receptor function, as K194 mutation to A or Q and R255 mutation to Q or D decreased the secretin's affinity 15- to 1000-fold, respectively. Six extracellular charged residues are conserved in closely related receptors but not in the whole family. K121 (TM I) and R277 (TM V) were not important for functional secretin receptor expression. D174 (TM II) was necessary to stabilize the active receptor structure: the D174N mutant receptors were unable to stimulate normally the adenylate cyclase in response to secretin, and functional D174A receptors could not be found. Mutation of R255, E259 (second extracellular loop), and E351 (third extracellular loop) to uncharged residues reduced only 10- to 100-fold the secretin potency without changing its efficacy: these residues either stabilized the active receptor conformation or formed hydrogen rather than ionic bonds with secretin. Mutation of K121 (TM I) to Q or L and of R277 (TM V) to E or Q did not affect the receptor functional properties.  相似文献   

15.
N Kruse  H P Tony    W Sebald 《The EMBO journal》1992,11(9):3237-3244
Interleukin-4 (IL-4) represents a prototypic lymphokine (for a recent review see Paul, 1991). It promotes differentiation of B-cells and the proliferation of T- and B-cell, and other cell types of the lymphoid system. An antagonist of human IL-4 was discovered during the studies presented here after Tyr124 of the recombinant protein had been substituted by an aspartic acid residue. This IL-4 variant, Y124D, bound with high affinity to the IL-4 receptor (KD = 310 pM), but retained no detectable proliferative activity for T-cells and inhibited IL-4-dependent T-cell proliferation competitively (K(i) = 620 pM). The loss of efficacy in variant Y124D was estimated to be greater than 100-fold on the basis of a weak partial agonist activity for the very sensitive induction of CD23 positive B-cells. The substitution of Tyr124 by either phenylalanine, histidine, asparagine, lysine or glycine resulted in partial agonist variants with unaltered receptor binding affinity and relatively small deficiencies in efficacy. These results demonstrate that high affinity binding and signal generation can be uncoupled efficiently in a ligand of a receptor belonging to the recently identified hematopoietin receptor family. In addition we show for the first time, that a powerful antagonist acting on the IL-4 receptor system can be derived from the IL-4 protein.  相似文献   

16.
Despite its potent ability to inhibit proinflammatory cytokine synthesis, interleukin (IL)-10 has a marginal clinical effect in rheumatoid arthritis (RA) patients. Recent evidence suggests that IL-10 induces monocyte/macrophage maturation in cooperation with macrophage-colony stimulating factor (M-CSF). In the present study, we found that the inducible subunit of the IL-10 receptor (IL-10R), type 1 IL-10R (IL-10R1), was expressed at higher levels on monocytes in RA than in healthy controls, in association with disease activity, while their expression of both type 1 and 2 tumour necrosis factor receptors (TNFR1/2) was not increased. The expression of IL-10R1 but not IL-10R2 was augmented on monocytes cultured in the presence of RA synovial tissue (ST) cell culture supernatants. Cell surface expression of TNFR1/2 expression on monocytes was induced by IL-10, and more efficiently in combination with M-CSF. Two-color immunofluorescence labeling of RA ST samples showed an intensive coexpression of IL-10R1, TNFR1/2, and M-CSF receptor in CD68+ lining macrophages. Adhered monocytes, after 3-day preincubation with IL-10 and M-CSF, could produce more IL-1β and IL-6 in response to TNF-α in the presence of dibutyryl cAMP, as compared with the cells preincubated with or without IL-10 or M-CSF alone. Microarray analysis of gene expression revealed that IL-10 activated various genes essential for macrophage functions, including other members of the TNFR superfamily, receptors for chemokines and growth factors, Toll-like receptors, and TNFR-associated signaling molecules. These results suggest that IL-10 may contribute to the inflammatory process by facilitating monocyte differentiation into TNF-α-responsive macrophages in the presence of M-CSF in RA.  相似文献   

17.
The capacity of human monocytoid cell lines and peripheral blood monocytes to modulate their expression of plasminogen receptors has been assessed. After PMA stimulation, THP-1 or U937 monocytoid cells were separated into adherent and nonadherent populations. Plasminogen bound to adherent cells with similar capacity and affinity as to nonstimulated cells. In contrast, the nonadherent cells bound plasminogen with 5-17-fold higher capacity (without a change in affinity). This increase was selective as urokinase bound with similar affinity and capacity to the adherent and nonadherent populations. Upregulation of plasminogen receptors on the nonadherent monocytoid cells was rapid, detectable within 30 min, and reversible, adhesion of the nonadherent cells resulted in a sixfold decrease in plasminogen binding within 90 min. The increase in plasminogen binding to the nonadherent cells was associated with a marked increase in their capacity to generate plasmin activity from cell-bound plasminogen. PMA stimulation of human peripheral blood monocytes increased their expression of plasminogen receptors by two- to fourfold. This increase was observed in both adherent and nonadherent monocytes. Freshly isolated monocytes maximally bound 5.0 x 10(5) plasminogen molecules per cell, whereas monocytes cultured for 18 h or more maximally bound 1.7 x 10(7) molecules per cell, a 30-fold difference in receptor number. These results indicate that both monocytes and monocytoid cell lines can rapidly and markedly regulate their expression of plasminogen binding sites. As enhanced plasminogen binding is correlated with an increased capacity to generate plasmin, an enzyme with broad substrate recognition, modulation of plasminogen receptors may have profound functional consequences.  相似文献   

18.
Neuromedin U (NmU), originally isolated from porcine spinal cord and later from other species, is a novel peptide that potently contracts smooth muscle. NmU interacts with two G protein-coupled receptors designated as NmU-1R and NmU-2R. This study demonstrates a potential proinflammatory role for NmU. In a mouse Th2 cell line (D10.G4.1), a single class of high affinity saturable binding sites for (125)I-labeled NmU (K(D) 364 pM and B(max) 1114 fmol/mg protein) was identified, and mRNA encoding NmU-1R, but not NmU-2R, was present. Competition binding analysis revealed equipotent, high affinity binding of NmU isopeptides to membranes prepared from D10.G4.1 cells. Exposure of these cells to NmU isopeptides resulted in an increase in intracellular Ca(2+) concentration (EC(50) 4.8 nM for human NmU). In addition, NmU also significantly increased the synthesis and release of cytokines including IL-4, IL-5, IL-6, IL-10, and IL-13. Studies using pharmacological inhibitors indicated that maximal NmU-evoked cytokine release required functional phospholipase C, calcineurin, MEK, and PI3K pathways. These data suggest a role for NmU in inflammation by stimulating cytokine production by T cells.  相似文献   

19.
We examined the effect of leukemia inhibitory factor (LIF) on the expression of interleukin 6 receptors (IL-6R) on mouse myelomonocytic leukemic M1 cells. Binding studies using 125I-labeled human and murine IL-6 revealed that LIF caused a decrease in IL-6 binding to M1 cells. The decrease became evident within 1 h, and the maximum decrease was observed at 3-6 h. Scatchard plot analysis revealed that M1 cells had a single class of high affinity receptors for IL-6 and that LIF-induced decrease in IL-6 binding was due to a decrease in the number of IL-6R on the cell surface and not to changes in their affinity. The affinity of IL-6R on M1 cells to human IL-6 (Kd = 2.25 nM) was about 10-fold lower than that to murine IL-6 (Kd = 200 pM). The amount of IL-6 secreted into culture media by M1 cells that were treated with LIF for up to 12 h was not enough to cause receptor down-regulation. Northern blot analysis demonstrated that IL-6R mRNA was down-regulated by LIF treatment, and similar regulation was also observed when the cells were treated with IL-6. The time course of the IL-6R mRNA level was similar to that of IL-6R expression on the cell surface, suggesting that the main mechanism responsible for the loss of high affinity IL-6R was the regulation of IL-6R mRNA. Although the half-life of IL-6R on the cell surface was about 30 min, the addition of LIF reduced it to 16 min, suggesting the existence of an additional mechanism responsible for the loss of high affinity IL-6R on the cell surface.  相似文献   

20.
IL-4 is a key cytokine associated with allergy and asthma. Induction of cell signaling by IL-4 involves interaction with its cognate receptors, a complex of IL-4Ralpha with either the common gamma-chain or the IL-13R chain alpha1 (IL-13Ralpha1). We found that IL-4 bound to the extracellular domain of IL-4Ralpha (soluble human (sh)IL-4Ralpha) with high affinity and specificity. In contrast with the sequential mechanism of binding and stabilization afforded by IL-4Ralpha to the binding of IL-13 to IL-13Ralpha1, neither common gamma-chain nor IL-13Ralpha1 contributed significantly to the stabilization of the IL-4:IL-4Ralpha complex. Based on the different mechanisms of binding and stabilization of the IL-4R and IL-13R complexes, we compared the effects of shIL-4Ralpha and an IL-4 double mutein (R121D/Y124D, IL-4R antagonist) on IL-4- and IL-13-mediated responses. Whereas IL-4R antagonist blocked responses to both cytokines, shIL-4Ralpha only blocked IL-4. However, shIL-4Ralpha stabilized and augmented IL-13-mediated STAT6 activation and eotaxin production by primary human bronchial fibroblasts at suboptimal doses of IL-13. These data demonstrate that IL-4Ralpha plays a key role in the binding affinity of both IL-13R and IL-4R complexes. Under certain conditions, shIL-4Ralpha has the potential to stabilize binding IL-13 to its receptor to augment IL-13-mediated responses. Thus, complete understanding of the binding interactions between IL-4 and IL-13 and their cognate receptors may facilitate development of novel treatments for asthma that selectively target these cytokines without unpredicted or detrimental side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号