首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sipuncula is a lophotrochozoan taxon with annelid affinities, albeit lacking segmentation of the adult body. Here, we present data on cell proliferation and myogenesis during development of three sipunculan species, Phascolosoma agassizii, Thysanocardia nigra, and Themiste pyroides. The first anlagen of the circular body wall muscles appear simultaneously and not subsequently as in the annelids. At the same time, the rudiments of four longitudinal retractor muscles appear. This supports the notion that four introvert retractors were part of the ancestral sipunculan bodyplan. The longitudinal muscle fibers form a pattern of densely arranged fibers around the retractor muscles, indicating that the latter evolved from modified longitudinal body wall muscles. For a short time interval, the distribution of S-phase mitotic cells shows a metameric pattern in the developing ventral nerve cord during the pelagosphera stage. This pattern disappears close to metamorphic competence. Our findings are congruent with data on sipunculan neurogenesis, as well as with recent molecular analyses that place Sipuncula within Annelida, and thus strongly support a segmental ancestry of Sipuncula.  相似文献   

2.
Abstract. The body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head retractors, three pairs of incomplete circular muscles, which are modified into dorso-ventral muscles, and a single pair of dorsolateral muscles. The visceral musculature consists of a complex of thick muscles associated with the mastax, as well as several sets of delicate fibers associated with the corona, stomach, gut, and cloaca, including thin longitudinal gut fibers and viscero-cloacal fibers, never before reported in other species of rotifers. The dorsal, lateral, and ventral retractor muscles and the incomplete circular muscles associated with the body wall appear to be apomorphies for the Rotifera. Muscle-revealing staining shows promise for providing additional information on previously unrecognized complexity in rotifer musculature that will be useful in functional morphology and phylogenetic analyses.  相似文献   

3.
Kajihara  Hiroshi  Gibson  Ray  Mawatari  Shunsuke F. 《Hydrobiologia》2001,456(1-3):187-198
A new genus and species of monostiliferous hoplonemertean, Diopsonemertes acanthocephala gen. et sp. nov., is described from Otsuchi Bay, Japan. Significant anatomical features of the new form include a body wall longitudinal musculature anteriorly divided into inner and outer layers by connective tissue, no pre-cerebral septum, the presence of a thin coat of diagonal muscle fibres between the body wall longitudinal and circular muscle layers in the foregut body region, cephalic retractor muscles derived only from the inner portion of the divided longitudinal muscles and a rhynchocoel more than half the body length.  相似文献   

4.
Recent interpretations of developmental gene expression patterns propose that the last common metazoan ancestor was segmented, although most animal phyla show no obvious signs of segmentation. Developmental studies of non-model system trochozoan taxa may shed light on this hypothesis by assessing possible cryptic segmentation patterns. In this paper, we present the first immunocytochemical data on the ontogeny of the nervous system and the musculature in the sipunculan Phascolion strombus. Myogenesis of the first anlagen of the body wall ring muscles occurs synchronously and not subsequently from anterior to posterior as in segmented spiralian taxa (i.e. annelids). The number of ring muscles remains constant during the initial stages of body axis elongation. In the anterior-posteriorly elongated larva, newly formed ring muscles originate along the entire body axis between existing myocytes, indicating that repeated muscle bands do not form from a posterior growth zone. During neurogenesis, the Phascolion larva expresses a non-metameric, paired, ventral nerve cord that fuses in the mid-body region in the late-stage elongated larva. Contrary to other trochozoans, Phascolion lacks any larval serotonergic structures. However, two to three FMRFamide-positive cells are found in the apical organ. In addition, late larvae show commissure-like neurones interconnecting the two ventral nerve cords, while early juveniles exhibit a third, medially placed FMRFamidergic ventral nerve. Although we did not find any indications for cryptic segmentation, certain neuro-developmental traits in Phascolion resemble the conditions found in polychaetes (including echiurans) and myzostomids and support a close relationship of Sipuncula and Annelida.  相似文献   

5.

Background

The standard textbook information that annelid musculature consists of oligochaete-like outer circular and inner longitudinal muscle-layers has recently been called into question by observations of a variety of complex muscle systems in numerous polychaete taxa. To clarify the ancestral muscle arrangement in this taxon, we compared myogenetic patterns during embryogenesis of Ophryotrocha diadema with available data on oligochaete and polychaete myogenesis. This work addresses the conflicting views on the ground pattern of annelids, and adds to our knowledge of the evolution of lophotrochozoan taxa.

Results

Somatic musculature in Ophryotrocha diadema can be classified into the trunk, prostomial/peristomial, and parapodial muscle complexes. The trunk muscles comprise strong bilateral pairs of distinct dorsal and ventral longitudinal strands. The latter are the first to differentiate during myogenesis. They originate within the peristomium and grow posteriorly through the continuous addition of myocytes. Later, the longitudinal muscles also expand anteriorly and form a complex arrangement of prostomial muscles. Four embryonic parapodia differentiate in an anterior-to-posterior progression, significantly contributing to the somatic musculature. Several diagonal and transverse muscles are present dorsally. Some of the latter are situated external to the longitudinal muscles, which implies they are homologous to the circular muscles of oligochaetes. These circular fibers are only weakly developed, and do not appear to form complete muscle circles.

Conclusion

Comparison of embryonic muscle patterns showed distinct similarities between myogenetic processes in Ophryotrocha diadema and those of oligochaete species, which allows us to relate the diverse adult muscle arrangements of these annelid taxa to each other. These findings provide significant clues for the interpretation of evolutionary changes in annelid musculature.  相似文献   

6.
The musculature of larvae of Gordius aquaticus was investigated by laser-scanning microscopy and compared to transmission electron microscopic data for the larva of Paragordius varius. In the anterior portion of the body, the preseptum, four different muscle groups can be distinguished: (1) 12 anterior parietal muscles in the body wall, (2) six oblique muscles that function as retractors of the introvert, (3) six proboscideal muscles, which function as retractors for the proboscis, and (4) six muscles associated with spines of the outermost of the three rings of spines. The posterior portion of the body, the postseptum, possesses four pairs of longitudinal muscle strands in G. aquaticus, the postseptal parietal muscles, that are located dorsolaterally and ventrolaterally. These are not clearly visible in P. varius, where instead three pairs of parietal muscles are present. Additional small muscles are associated with the terminal spines and with the duct running from the pseudointestine to the body wall. All fibers show a cross-striated pattern although this striation is less obvious at the ends of the fibers.  相似文献   

7.
The musculature of adult specimens of Cossura pygodactylata was studied by means of F-actin labelling and confocal laser scanning microscopy (CLSM). Their body wall is comprised of five longitudinal muscle bands: two dorsal, two ventral and one ventromedial. Complete circular fibres are found only in the abdominal region, and they are developed only on the border of the segments. Thoracic and posterior body regions contain only transverse fibres ending near the ventral longitudinal bands. Almost-complete rings of transverse muscles, with gaps on the dorsal and ventral sides, surround the terminal part of the pygidium. Four longitudinal bands go to the middle of the prostomium and 5–14 paired dorso-ventral muscle fibres arise in its distal part. Each buccal tentacle contains one thick and two thin longitudinal muscle filaments; thick muscle fibres from all tentacles merge, forming left and right tentacle protractors rooted in the dorsal longitudinal bands of the body wall. The circumbuccal complex includes well-developed upper and lower lips. These lips contain an outer layer of transverse fibres, and the lower lip also contains inner oblique muscles going to the dorsal longitudinal bands. The branchial filament contains two longitudinal muscle fibres that do not connect with the body musculature. The parapodial complex includes strong intersegmental and segmental oblique muscles in the thoracic region only; chaetal retractors, protractors and muscles of the body wall are present in all body regions. Muscle fibres are developed in the dorsal and ventral mesenteries. One semi-circular fibre is developed on the border of each segment and is most likely embedded in the dissepiment. The intestine has thin circular fibres along its full length. The dorsal blood vessel has strong muscle fibres that cover its anterior part, which is called the heart. It consists of short longitudinal elements forming regular rings and inner partitions. The musculature of C. pygodactylata includes some elements that are homologous with similar muscular components in other polychaetes (i.e., the body wall and most parapodial muscles) and several unique features, mostly at the anterior end.  相似文献   

8.
The taxonomy of freshwater pulmonates (Hygrophila) has been in a fluid state warranting the search for new morphological criteria that may show congruence with molecular phylogenetic data. We examined the muscle arrangement in the penial complex (penis and penis sheath) of most major groups of freshwater pulmonates to explore to which extent the copulatory musculature can serve as a source of phylogenetic information for Hygrophila. The penises of Acroloxus lacustris (Acroloxidae), Radix auricularia (Lymnaeidae), and Physella acuta (Physidae) posses inner and outer layers of circular muscles and an intermediate layer of longitudinal muscles. The inner and outer muscle layers in the penis of Biomphalaria glabrata consist of circular muscles, but this species has two intermediate longitudinal layers separated by a lacunar space, which is crossed by radial and transverse fibers. The muscular wall of the penis of Planorbella duryi is composed of transverse and longitudinal fibers, with circular muscles as the outer layer. In Planorbidae, the penial musculature consists of inner and outer layers of longitudinal muscles and an intermediate layer of radial muscles. The penis sheath shows more variation in muscle patterns: its muscular wall has two layers in A. lacustris, P. acuta, and P. duryi, three layers in R. auricularia and Planorbinae and four layers in B. glabrata. To trace the evolution of the penial musculature, we mapped the muscle characters on a molecular phylogeny constructed from the concatenated 18S and mtCOI data set. The most convincing synapomorphies were found for Planorbinae (inner and outer penis layers of longitudinal muscles, three-layered wall of the penis sheath). A larger clade coinciding with Planorbidae is defined by the presence of radial muscles and two longitudinal layers in the penis. The comparative analysis of the penial musculature appears to be a promising tool in unraveling the phylogeny of Hygrophila.  相似文献   

9.
We studied the embryonic development of body-wall musculature in the acoel turbellarian Convoluta pulchra by fluorescence microscopy using phalloidin-bound stains for F-actin. During stage 1, which we define as development prior to 50% of the time between egg-laying and hatching, actin was visible only in zonulae adhaerentes of epidermal cells. Subsequent development of muscle occurred in two distinct phases: first, formation of an orthogonal grid of early muscles and, second, differentiation of other myoblasts upon this grid. The first elements of the primary orthogonal muscle grid appeared as short, isolated, circular muscle fibers (stage 2; 50% developmental time), which eventually elongated to completely encircle the embryo (stage 3; at 60% of total developmental time). The first primary longitudinal fibers appeared later, along with some new primary circular fibers, by 60-63% of total developmental time (stage 4). From 65 to 100% of total developmental time (stages 5 to 7), secondary fibers, using primary fibers as templates, arose; the number of circular and longitudinal muscles thus increased, and at the same time parenchymal muscles began appearing. Hatchlings (stage 8) possessed about 25 circular and 30 longitudinal muscles as well as strong parenchymal muscles. The remarkable feature of the body wall of many adult acoel flatworms is that longitudinal muscles bend medially and cross each other behind the level of the mouth. We found that this development starts shortly after the appearance of the ventral mouth opening within the body wall muscle grid. The adult organization of the body-wall musculature consists of a grid of several hundred longitudinal and circular fibers and a few diagonal muscles. Musculature of the reproductive organs developed after hatching. Thus, extensive myogenesis must occur also during postembryonic development. Comparison between the turbellarians and the annelids suggests that formation of a primary orthogonal muscle grid and its subsequent use as a template for myoblast differentiation are the two basic developmental phases in vermiform Spiralia if not in the Bilateria as a whole. Finally, our new data suggest that for the Acoela the orthogonal primary patterning of longitudinal and circular muscles in the body wall is achieved without using originally positional information of the nervous system.  相似文献   

10.
The annelid body wall generally comprises an outer layer of circular muscle fibres and an inner layer of longitudinal muscle fibres as well as parapodial and chaetal muscles. An investigation of Dysponetuspygmaeus (Chrysopetalidae) with confocal laser scanning microscopy showed that circular muscles are entirely absent. Further studies indicate that this feature is characteristic for all Chrysopetalidae. A scrutiny of the literature showed a similar situation in many other polychaetes. This lack of circular muscle fibres may either be due to convergence or represent a plesiomorphic character. Since circular muscles are very likely important for burrowing forms but not necessary for animals which proceed by movements of their parapodial appendages or cilia, this problem is also related to the question of whether the ancestral polychaete was epi‐ or endobenthic.  相似文献   

11.
A body wall musculature comprising an outer layer of circularfibers and an inner layer of longitudinal fibers is generallyseen as the basic plan in Annelida. Additional muscles may bepresent such as oblique, parapodial, chaetal, and dorsoventralmuscles. The longitudinal muscle fibers do not form a continuouslayer but are arranged in distinct bands in polychaetes. Mostlythere are four to six bands, usually including prominent ventraland dorsal bands. However, other patterns of muscle band arrangementalso exist. The ventral nerve cord lies between the two ventralbands in certain polychaetes, and is covered by an additionallongitudinal muscle band of comparatively small size. In manypolychaetes with reduced parapodia and in Clitellata a moreor less continuous layer of longitudinal fibers is formed. Clitellatais the only group with a complete layer of longitudinal musculature.Circular fibers are usually less developed than the longitudinalmuscles. However, recent investigations employing phalloidinstaining in combination with confocal laser scanning microscopyrevealed that absence of circular muscles is much more widelydistributed within the polychaetes than was previously known.This necessitates thorough reinvestigations of polychaete musclesystems, and this feature has to be taken into account in furtherdiscussions of the phylogeny and evolution of Annelida.  相似文献   

12.
Whole-mounts of Philodina sp., a bdelloid rotifer, were stained with fluorescent-labeled phalloidin to visualize the musculature. Several different muscle types were identified including incomplete circular bands, coronal retractors and foot retractors. Based on the position of the larger muscle bands in the body wall, their function during creeping locomotion and tun formation was inferred. Bdelloid creeping begins with the contraction of incomplete circular muscle bands against the hydrostatic pseudocoel, resulting in an anterior elongation of the body. One or more sets of ventral longitudinal muscles then contract bringing the rostrum into contact with the substrate, where it presumably attaches via adhesive glands. Different sets of ventral longitudinal muscles, foot and trunk retractors, function to pull the body forward. These same longitudinal muscle sets are also used in `tun' formation, in which the head and foot are withdrawn into the body. Three sets of longitudinal muscles supply the head region (anterior head segments) and function in withdrawal of the corona and rostrum. Two additional pairs of longitudinal muscles function to retract the anterior trunk segments immediately behind the head, and approximately five sets of longitudinal retractors are involved in the withdrawal of the foot and posterior toes. To achieve a greater understanding of rotifer behavior, it is important to elucidate the structural complexity of body wall muscles in rotifers. The utility of fluorescently-labeled phalloidin for the visualization of these muscles is discussed and placed in the context of rotifer functional morphology.  相似文献   

13.
To date only few comparative approaches tried to reconstruct the ontogeny of the musculature in invertebrates. This may be due to the difficulties involved in reconstructing three dimensionally arranged muscle systems by means of classical histological techniques combined with light or transmission electron microscopy. Within the scope of the present study we investigated the myogenesis of premetamorphic, metamorphic, and juvenile developmental stages of the anaspidean opisthobranch Aplysia californica using fluorescence F‐actin‐labeling in conjunction with modern confocal laser scanning microscopy. We categorized muscles with respect to their differentiation and degeneration and found three true larval muscles that differentiate during the embryonic and veliger phase and degenerate during or slightly after metamorphosis. These are the larval retractor, the accessory larval retractor, and the metapodial retractor muscle. While the pedal retractor muscle, some transversal mantle fibers and major portions of the cephalopedal musculature are continued and elaborated during juvenile and adult life, the buccal musculature and the anterior retractor muscle constitute juvenile/adult muscles which differentiate during or after metamorphosis. The metapodial retractor muscle has never been reported for any other gastropod taxon. Our findings indicate that the late veliger larva of A. californica shares some common traits with veligers of other gastropods, such as a larval retractor muscle. However, the postmetamorphic stages exhibit only few congruencies with other gastropod taxa investigated to date, which is probably due to common larval but different adult life styles within gastropods. Accordingly, this study provides further evidence for morphological plasticity in gastropod myogenesis and stresses the importance of ontogenetic approaches to understand adult conditions and life history patterns. J. Morphol., 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

14.
The histology and ultrastructure of the body wall in Phoronopsis harmeriwere studied using light microscopy and TEM. The ectoderm epithelium of tentacles, anterior body region, and ampulla consists of monociliary cells. Gram-negative bacteria were found between microvilli, in the protocuticle of the anterior region, and in the ampulla. The epithelium of the posterior body region lacks both monociliary cells and bacteria. The bundles of nerve fibers run between the layer of epithelial cells and basal membrane. The musculature of the body wall comprises circular and longitudinal muscles. The circular muscle fibers are applied to the basal membrane and constitute a solid layer extending almost throughout the length of the body. This pattern is broken in the posterior body region, where there is no solid layer of circular musculature, and the latter is arranged in isolated muscle bands. In the ampullar (terminal) body region, the inversion of circular and longitudinal muscle layers takes place, so that the latter appears to be pressed against the basal membrane. The apical surfaces of longitudinal muscle cells bear cytoplasmic processes; some of the cells have a flagellum. The basal portion of the longitudinal muscle cells forms a cytoplasmic process containing bundles of tonofilaments. The processes of all cells making up the muscle bands are interwoven and anchored to the basal membrane.  相似文献   

15.
Summary A whole-mount fluorescence technique using rhodamine-labeled phalloidin was used to demonstrate for the first time the whole muscle system of a free-living plathelminth, Macrostomum hystricinum marinum. As expected, the body-wall musculature consisted of circular, longitudinal, and diagonal fibers over the trunk. Also distinct were the musculature of the gut and of the mouth and pharynx (circular, longitudinal, and radial). Dorsoventral fibers where restricted in this species to the head and tail regions. Circular muscle fibers in the body wall were often grouped into bands of up to four parallel strands. Surprisingly, diagonal fibers formed two distinct sets, one dorsal and one ventral. Certain diagonal muscle fibers entered the wall of the mouth and were continuous with some longitudinal muscles of the pharynx. Dorsoventral fibers in the rostrum occurred partly in regularly spaced pairs, a fact not known for free-living Plathelminthes. All muscle fibers appeared to be mononucleated. During postembryonic development, the number of circular muscle fibers can be estimated to increase by a factor of 3.5 and that of longitudinal muscles by a factor of 2. Apparently as many as 700–800 circular muscle cells must be added in the region of the gut alone during postembryonic development. Stem cells (neoblasts), identified by TEM in the caudalmost region of the gut, lie along the lateral nerve cords. In the same body region most perikarya of circular muscle cells occurred in a similar position. This suggests that the nucleus-containing part of the cell remains in the position where differentiation starts.  相似文献   

16.
Fluorescence-labelled phalloidin in combination with confocal laser scanning microscopy (cLSM) has been used to reconstruct the body musculature in Encentrum mucronatum and Dicranophorus forcipatus in order to gain insight into the architecture of body musculature in representatives of the hitherto uninvestigated Dicranophoridae.

In both species, a system of outer circular and inner longitudinal muscles has been found. In E. mucronatum, seven circular muscles (musculi circulares I–VII) and six paired longitudinal muscles (musculi longitudinales I–VI) have been identified. In D. forcipatus, eight circular muscles (musculi circulares I–VIII) and nine paired longitudinal muscles (musculi longitudinales I–IX) are present. In both species, some of the longitudinal muscles span the whole specimen, while others are shorter and connect head and trunk or foot and trunk. Differences in shape and extension of the circular muscles in both species are related to differences in structure of the trunk integument.

Surveying the literature on rotifer musculature, muscles identified in this study are homologised across Rotifera and given individual names. Based on the study of E. mucronatum and D. forcipatus and previous studies on other rotifers, a system of musculature in the ground pattern of Ploima comprising at least three circular muscles (pars coronalis, corona sphincter, musculus circumpedalis) and three pairs of longitudinal muscles (musculi longitudinales ventrales, musculi longitudinales dorsales and musculi longitudinales capitum) is suggested.  相似文献   


17.
Results of this study on two species of vetigastropods contradict the long-standing hypothesis, originally proposed by Garstang (1929), that the larval retractor muscles power the morphogenetic movement of ontogenetic torsion in all basal gastropods. In the trochid Calliostoma ligatum and the keyhole limpet Diodora aspera, the main and accessory larval retractor muscles failed to establish attachments onto the protoconch (larval shell) when the antibiotics streptomycin sulfate and penicillin G were added to cultures soon after fertilization. Defects in protoconch mineralization were also observed. Despite these abnormalities, developing larvae of these species accomplished complete or almost complete ontogenetic torsion, a process in which the head and foot rotate by 180 degrees relative to the protoconch and visceral mass. Analysis by using phalloidin-fluorophore conjugate and transmission electron microscopy showed that myofilaments differentiated within myocytes of the larval retractor muscles and adherens-like junctions formed between muscle and mantle epithelial cells in both normal and abnormal larvae. However, in abnormal larvae, apical microvilli of mantle cells that were connected to the base of the larval retractor muscles failed to associate with an extracellular matrix that normally anchors the microvilli to the mineralized protoconch. If morphogenesis among extant, basal gastropods preserves the original developmental alteration that created gastropod torsion, as proposed by Garstang (1929), then the alteration involved something other than the larval retractor muscles. Alternatively, the developmental process of torsion has evolved subsequent to its origin in at least some basal gastropod clades so that the original alteration is no longer preserved in these clades.  相似文献   

18.
The phylogenetic position of the Ectoprocta within the Lophotrochozoa is discussed controversially. For gaining more insight into ectoproct relationships and comparing it with other potentially related phyla, we analysed the myoanatomy and serotonergic nervous system of adult representatives of the Phylactolaemata (Plumatella emarginata, Plumatellavaihiriae, Plumatella fungosa, Fredericella sultana). The bodywall contains a mesh of circular and longitudinal muscles. On its distal end, the orifice possesses a prominent sphincter and continues into the vestibular wall, which has longitudinal and circular musculature. The tentacle sheath carries mostly longitudinal muscle fibres in Plumatella sp., whereas F. sultana also possesses regular circular muscle fibres. Three groups of muscles are associated with the lophophore: 1) Lophophoral arm muscles (missing in Fredericella), 2) epistome musculature and 3) tentacle musculature. The epistome flap is encompassed by smooth muscle fibres. A few fibres extend medially over the ganglion to its proximal floor. Abfrontal tentacle muscles have diagonally arranged muscle fibres in their proximal region, whereas the distal region is formed by a stack of muscles that resemble an inverted ‘V’. Frontal tentacle muscles show more variation and either possess one or two bases. The digestive tract possesses circular musculature which is striated except at the intestine where it is composed of smooth muscle fibres. The serotonergic nervous system is concentrated in the cerebral ganglion. From the latter a serotonergic nerve extends to each tentacle base. In Plumatella the inner row of tentacles at the lophophoral concavity lacks serotonergic nerves. Bodywall musculature is a common feature in many lophotrochozoan phyla, but among other filter feeders like the Ectoprocta is only present in the ‘lophophorate’ Phoronida. The longitudinal tentacle musculature is reminiscent of the condition found in phoronids and brachiopods, but differs to entoproct tentacles. Although this study shows some support for the ‘Lophophorata’, more comparative analyses of possibly related phyla are required. J. Morphol., 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Dwarf males of the bone‐eating worms Osedax (Siboglinidae, Annelida) have been proposed to develop from larvae that settle on females rather than on bone. The apparent arrest in somatic development and resemblance of the males to trochophore larvae has been posited as an example of paedomorphosis. Here, we present the first investigation of the entire muscle and nervous system in dwarf males of Osedax frankpressi, O. roseus, O. rubiplumus, and O. “spiral” analyzed by multistaining and confocal laser scanning microscopy. Sperm shape and spermiogenesis, the sperm duct and internal and external ciliary patterns were likewise visualized. The males of all four species possess morphological traits typical of newly settled siboglinid larvae: a prostomium, a peristomium with a prototroch, one elongate segment and a second shorter segment. Each segment has a ring of eight long‐handled hooked chaetae. The longitudinal muscles are distributed as evenly spaced strands forming a grid with the thin outer circular muscles. Oblique protractor and retractor muscles are associated with each of the chaetal sacs. The nervous system comprises a cerebral ganglion, a prototroch nerve ring, paired dorsolateral longitudinal nerves, five ventral longitudinal nerves with paired, posterior ganglia and a terminal commissure, as well as a net of fine peripheral transverse plexuses surrounding the first segment. Internal ciliation occurs as paired ventrolateral bands along the first segment. The bands appear to lead the free mature sperm to a ciliated duct and seminal vesicle lying just behind the prototroch region. A duct then runs from the seminal vesicle into the dorsal part of the prostomium. The similarity of Osedax males to the larvae of Osedax and other siboglinid annelids as well as similarities shown here to the neuromuscular organization seen in other annelid larvae supports the hypothesis of paedomorphosis in males of Osedax. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Myogenesis is currently investigated in a number of invertebrate taxa using combined techniques, including fluorescence labeling, confocal microscopy, and 3D imaging, in order to understand anatomical and functional issues and to contribute to evolutionary questions. Although developmental studies on the gross morphology of bivalves have been extensively pursued, organogenesis including muscle development has been scarcely investigated so far. The present study describes in detail myogenesis in the scallop Nodipecten nodosus (Linnaeus, 1758) during larval and postmetamorphic stages by means of light, electron, and confocal microscopy. The veliger muscle system consists of an anterior adductor muscle, as well as four branched pairs of striated velum retractors and two pairs of striated ventral larval retractors. The pediveliger stage exhibits a considerably elaborated musculature comprising the velum retractors, the future adult foot retractor, mantle (pallial) muscles, and the anterior and posterior adductors, both composed of smooth and striated portions. During metamorphosis, all larval retractors together with the anterior adductor degenerate, resulting in the adult monomyarian condition, whereby the posterior adductor retains both myofiber types. Three muscle groups, i.e., the posterior adductor, foot retractor, and pallial muscles, have their origin prior to metamorphosis and are subsequently remodeled. Our data suggest a dimyarian condition (i.e., the presence of an anterior and a posterior adductor in the adult) as the basal condition for pectinids. Comparative analysis of myogenesis across Bivalvia strongly argues for ontogenetic and evolutionary independence of larval retractors from the adult musculature, as well as a complex set of larval retractor muscles in the last common bivalve ancestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号