首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composition of glycosaminoglycans in human pancreatic cancer   总被引:1,自引:0,他引:1  
Five glycosaminoglycans were isolated from tryptic digestion of both cancerous and normal tissues of the human pancreas and were assayed by determining the carbohydrate content of materials. Separation of these five polymers was achieved by Dowex 1-X2 column chromatography and fractionation with Benedict's solution. They were identified as hyaluronic acid, heparan sulfate, dermatan sulfate, chondroitin-4-sulfate, and chondroitin-6-sulfate, respectively. The total amount of glycosaminoglycans in cancer tissue increased in comparison to the controls. The increase in tissue content of glycosaminoglycans was accompanied by increases in chondroitin-4-sulfate and chondroitin-6-sulfate levels.  相似文献   

2.
Ester sulfate containing glycosaminoglycans comprising approx. 3% of the total glycosaminoglycan content, have been isolated from protease-digested bovine vitreous body by stepwise fractionation on AG-1X2(Cl?) and gel filtration on Bio-Gel P-300. Two heparan sulfate and two chondroitin-4-sulfate fractions were isolated in nearly pure form. The heparan sulfate fractions were undersulfated and contained the same relative proportions of N- and O-sulfate (1 : 2), although the total sulfate content differed by approx. 100%. No chondroitin-6-sulfate was present in the isolates, based on evidence obtained from chondroitin ABC lyase experiments.  相似文献   

3.
The glycosaminoglycan composition of human amniotic fluid between 12–21 weeks gestation has been studied by Dowex column chromatography coupled with enzymatic analyses of the specific glycosaminoglycan in each column fraction. The total uronic acid recovered from the columns consisted of “glycopeptides” (7%), hyaluronic acid (34%), nonsulfated chondroitin (14%), chondroitin-4-sulfate (13%), chondroitin-6-sulfate (20%), dermatan sulfate (5%), and heparan sulfate (6%). Based on these studies a simple screening procedure was devised to detect increased quantities of heparan sulfate and dermatan sulfate in 5–10-ml samples of amniotic fluid and tested in the antenatal diagnosis of Hurler and Hunter's syndrome. A false negative result was recorded in a Hunter fluid obtained early gestation and a false positive result recorded in a normal fluid obtained at weeks. These data suggest that the time in gestation when amniotic fluid is sampled for chemical analysis is an important variable affecting glycosaminoglycan composition in both normal and pathological pregnancies.  相似文献   

4.
Embryonic chick neural retinas incorporated radio-labeled precursors into glycosaminoglycans in the same relative amounts whether cultured as intact tissues, cell aggregates, or monolayers. Incubation with 5-bromo-2′-deoxyuridine inhibited histogenesis and caused the pattern of synthesis to remain more like that in undifferentiated tissue, when compared with controls without this nucleoside analog. This was determined by the level of incorporation and the ratios of chondroitin sulfate to heparan sulfate and chondroitin-4-sulfate to chondroitin-6-sulfate incorporation. Incubation with 4-methylumbelliferyl-β-D-xylopyranoside stimulated synthesis and release of chondroitin sulfate and heparan sulfate into the medium. The results taken together imply that the production of specific glycosaminoglycans during the course of differentiation in the retina is regulated at the gene level in parallel with histogenesis in this tissue.  相似文献   

5.
Incorporation of [35S]sulfate into sulfated mucopolysaccharides has been characterized in midgestation mouse embryo, yolk sac, trophoblast, and decidua. Enzymatic analysis indicated that chondroitin sulfates contained approximately half of the label in embryo, trophoblast, and decidua, but less than 20% in yolk sac. While the labeled chondroitin sulfate fraction of trophoblast and decidua was mainly chondroitin-4-sulfate, only embryo contained a significant proportion of labeled chondroitin-6-sulfate. The relative incorporation into embryo chondroitin-6-sulfate was also substantially higher than that observed in four adult soft tissues. Labeled dermatan sulfate was absent from the embryo and yolk sac, but small amounts might have been synthesized by the placenta. Nitrous acid degradation studies revealed that essentially all the chondroitinase resistant MPS was N-sulfated, i.e., heparan sulfate and/or heparin. Electrophoretic profiles indicate that the bulk of the N-sulfated material resembles heparan sulfate rather than heparin. Electrophoretic heterogeneity and slow migration rates relative to standard markers suggest that the majority of labeled chondroitin sulfates may be undersulfated. The different mucopolysaccharide patterns in the various tissues may reflect their specialized properties and functions.  相似文献   

6.
The specificity, affinity and stoichiometry of the interaction between avidin and glycosaminoglycans (GAGs) have been investigated using heparin-coated microtiter-plate assays, a filter binding assay and surface plasmon resonance (SPR) analysis using a BIAcore 2000 biosensor. Avidin binds heparin and heparan sulfate, and chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate or hyaluronan were unable to compete for binding. Highest-affinity binding was observed with heparin, and weaker binding was seen when using heparan sulfate or low molecular weight heparin preparations. This indicated that only specific polysaccharide structures tightly interact with avidin. Approximately two avidin molecules bind to each heparin molecule with an overall affinity of 160 nM. The interaction is pH dependent, increasing five-fold upon decreasing the pH from 7.5 to 5.5, while binding was negligible at pH 9. We demonstrate the potential of fluorescent avidin derivatives as a tool for the detection of heparin and heparan sulfates on surfaces by application to both heparin immobilized on polystyrene plates and heparan sulfate on cell surfaces.  相似文献   

7.
An endothelial cell (EC) growth factor isolated from bovine brain stimulates in vitro growth of human umbilical vein endothelial cells, and permits long term serial propagation. In the presence of increasing concentrations of EC growth factor, confluent cultures of early (CPDL less than or equal to 20) and late (CPDL greater than 20) passage human endothelial cells exhibit an increased incorporation of 3H-glucosamine and Na235SO4 into the glycosaminoglycans (GAG), hyaluronic acid, chondroitin, chondroitin-4-sulfate, dermatan-4-sulfate, and chondroitin-6-sulfate. An increase in both labelled sulfated and nonsulfated GAG was observed in the cytosol, membrane, secreted and extracellular matrix fractions. In contrast, endothelial cells grown in the presence of EC growth factor contained decreased amounts of labelled heparan sulfate than cells grown without EC growth factor. Confluent cultures of early passage cells had significantly more labelled GAG but significantly less heparan sulfate than cultures of late passage cells on a per cell basis. Extracellular matrix from early passage cells contained about two- to seven-fold more labelled GAG than extracellular matrix from late passage cells, but only about half as much labelled heparan sulfate. Cell adhesion was enhanced when cells were grown in the presence of EC growth factor as compared to adhesion of cells grown without EC growth factor. Conversely, trypsin-mediated detachment of cells grown in the presence of growth factor was inhibited as compared to detachment of cells grown in medium without EC growth factor. The composition of the extracellular matrix influenced incorporation of labelled GAG into extracellular matrix. Early passage cells grown to confluence on a matrix from late passage cells incorporated significantly less labelled GAG into extracellular matrix than when grown to confluence on matrix from early passage cells. Incorporation of labelled GAG into extracellular matrix was significantly higher when late passage cells were grown on a matrix from early passage endothelial cells than when grown on matrix from late passage cells. We conclude that EC growth factor selectively stimulates incorporation of isotopic precursors into GAG in cultures of early and late passage endothelial cells but inhibits incorporation of radiolabel into heparan sulfate; early passage cells contain more GAG but less heparan sulfate than late passage cells, extracellular matrix controls the amount of GAG and heparan sulfate incorporated into matrix.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Abstract. The nature, amounts, and distribution of glycos-aminoglycans (GAG) before and during odontoblast terminal differentiation were studied. GAG have been isolated from intact mouse tooth germs and from dissociated dental epithelia and dental papillae after labeling with [3H] glucos-amine or 35SO42− as precursor. The kinds and relative amounts of 3H-labeled GAG were analyzed by chromatography on a DEAE-cellulose column and cellulose thin-layer sheets. The amounts of individual GAG relative to total GAG were determined from the elution profiles, whereas their nature was identified by the selective removal of chromatographic peaks after enzymatic or chemical degradation. We found hyaluronate and probably a minute quantity of heparan sulfate in the dental epithelium, while hyaluronate, heparan sulfate, and chondroitin sulfate were the main types of GAG in the dental papilla. The chondroitin sulfate recovered was further fractionated by cellulose thin-layer chromatography into two isomers, namely chondroitin-4-sulfate (the major component) and chondroitin-6-sulfate. Changes in the elution profile from DEAE-cellulose chromatography of tooth GAG extracted from different developmental stages suggest that modifications of GAG occur during odontogenesis. Alcian blue staining localized large amounts of hyaluronate and sulfated GAG along the epithelio-mesenchymal junction. Tissue specificity and changing patterns of GAG were demonstrated during odontogenesis.  相似文献   

9.
The water sorptive and retentive capacities of three corneal proteoglycans with different keratan sulfate/chondroitin-4-sulfate compositions were investigated. The calcium salt of a predominantly keratan sulfate containing proteoglycan had hydration properties similar to that of calcium keratan sulfate. The proteoglycan containing predominantly calcium chondroitin-4-sulfate side chains sorbed water to a greater extent than pure calcium chondroitin-4-sulfate but its retentive power was somewhat less. The proteoglycan containing about twice as much keratan sulfate as chondroitin-4-sulfate, on a disaccharidic molar basis and had hydration properties which were closer to the behavior of chondroitin-4-sulfate than keratan sulfate. The results are discussed in terms of structure and polymer interaction in the proteoglycan matrices.  相似文献   

10.
Glycosaminoglycans (GAGs) were prepared from the muscular stomach or gizzard of the chicken. The content of GAGs on a dry weight basis contains 0.4 wt.% a typical value observed for a muscle tissue. The major GAG components were chondroitin-6-sulfate and chondroitin-4-sulfate (~64 %) of molecular weight 21–22 kDa. Hyaluronan (~24 %) had a molecular weight 120 kDa. Smaller amounts (12 %) of heparan sulfate was also present which was made of more highly sulfated chains of molecular weight of 21-22 kDa and a less sulfated low molecular weight (< 10 kDa) heterogeneous partially degraded heparan sulfate. Chicken gizzard represents an inexpensive and readily available source of muscle tissue-derived GAGs.  相似文献   

11.
The water sorptive and retentive capacities of three corneal proteoglycans with different keratan sulfate/chondroitin-4-sulfate compositions were investigated. The calcium salt of a predominantly keratan sulfate containing proteoglycan had hydration properties similar to that of calcium keratan sulfate. The proteoglycan containing predominantly calcium chondroitin-4-sulfate side chains sorbed water to a greater extent than pure calcium chondroitin-4-sulfate but its retentive power was somewhat less. The proteoglycan containing about twice as much keratan sulfate as chondroitin-4-sulfate, on a dissaccharidic molar basis and had hydration properties which were closer to the behavior of chondroitin-4-sulfate than keratan sulfate. The results are discussed in terms of structure and polymer interaction in the proteoglycan matrices.  相似文献   

12.
Glycosaminoglycan synthesis in endotoxin-induced lung injury   总被引:2,自引:0,他引:2  
Endotoxin-induced lung injury has previously been shown to produce lesions that resemble emphysema morphologically and biochemically as demonstrated by the reduction in the content of lung elastin. The purpose of this study was to define the changes in one other connective tissue component, glycosaminoglycans, during the acute phase of the lung injury. Intravenous administration of a single dose of endotoxin in rats resulted in an increase in the total synthesis of glycosaminoglycans by the pulmonary parenchyma. There was a significant increase in the proportion of dermatan sulfate synthesized during the first 48 hr and a concomitant decrease in heparin/heparan sulfate synthesis. At 48 hr the increased synthesis of dermatan sulfate had reached 7.3 times control values and began to decline, whereas the synthesis of chondroitin-4-sulfate rose from 4.1 to 10.7 times control values between 48 and 72 hr. Analysis of the rates of synthesis revealed that the total amount of heparin/heparan sulfate remained constant while the synthesis of chondroitin-6-sulfate increased proportionally to the overall synthesis of glycosaminoglycans. These findings indicate that dramatic changes in glycosaminoglycan synthesis are an integral part of endotoxin lung injury.  相似文献   

13.
The glycosaminoglycans of neural retinas from 5-, 7-, 10-, and 14-day chick embryos were labeled in culture with [3H]glucosamine and 35SO4, extracted, and isolated by gel filtration. The incorporation of label per retina into glycosaminoglycans increased with embryonic age, but that per cell and per unit weight of uronic acid decreased. Specific enzyme methods coupled with gel filtration and paper chromatography demonstrated that [3H]glucosamine incorporation into chondroitin sulfate increased between 5 and 14 days from 7 to 34% of the total incorporation into glycosaminoglycans. During this period, incorporation into chondroitin-4-sulfate increased relative to that into chondroitin-6-sulfate. Between 5 and 10 days, incorporation into heparan sulfate showed a relative decline from 89 to 61%. Incorporation into hyaluronic acid always represented less than 2% of the total. A twofold greater increase in galactosamine concentration than in glucosamine concentration in the glycosaminoglycan fraction between 7 and 14 days supports the conclusion that chondroitin sulfate was the most rapidly accumulating glycosaminoglycan. ECTEOLA-cellulose chromatography revealed a heterogeneity in the size and/or net charge of chondroitin sulfate and heparan sulfate. We conclude that incorporation of exogenous precursors into glycosaminoglycans in the chick retina decreases relative to cell number as differentiation progresses from a period of high mitotic activity to one of tissue specialization, and that it is accompanied by a net accumulation of glycosaminoglycan and a change in the pattern of its synthesis.  相似文献   

14.
Topical application of the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse skin causes marked changes in epidermal cell growth and differentiation. In the present studies we characterized the production of sulfated proteoglycans in the epidermis following treatment with TPA since these macromolecules are important structural and functional components of the tissue. We found that 35S-sulfate was readily incorporated into mouse epidermal proteoglycans. Sepharose CL-4B column chromatography revealed one major peak of sulfated proteoglycans in this tissue (Kav = 0.4-0.5). Approximately 65% of these proteoglycans were heparan sulfate and 10-20% chondroitin sulfate. Using specific monoclonal antibodies and flow cytometry, we found that the epidermal cells produced chondroitin-4-sulfate, chondroitin-6-sulfate and chondroitin-O-sulfate. Within 24 hr of application of TPA to mice, an increase in glycosaminoglycan content of the epidermis was observed. This was associated with a decrease in 35S-sulfate uptake into the tissue. Although TPA had no effect on the size or relative distribution of the epidermal sulfated proteoglycans, an increase in chondroitin-4-sulfate expression was observed in treated skin. Changes in the production of proteoglycans following TPA treatment may underlie structural alterations that occur in the epidermis during tumor promotion.  相似文献   

15.
16.
Abstract: To compare the loosely associated sulfated proteoglycans with those tightly bound to membranes, retinas from 14-day chick embryos were subjected to progressively disruptive techniques. The most easily removed proteoglycans were isolated from the medium in which the tissue was labeled with [35S]sulfate. On the average, 25% of the glycosaminoglycans were in the labeling medium, 39% were in proteoglycans extracted from the tissue in the balanced salt solution, 32% were in a 4 m -guanidinium chloride (GuCl) fraction, and 4% remained unextracted. These glycosaminoglycans contained, respectively, 28, 28, 40, and 4% of the incorporated [35S]sulfate. On the basis of electrophoretic mobility and TLC of chondroitinase digests, the ratio of 35S in chondroitin sulfate to that in heparan sulfate was 4–7 times higher in the medium and balanced salt extracts than in the GuCl extracts. In both extracts there was more 35S in chondroitin-6-sulfate than in chondroitin-4-sulfate. Dialysis of the extracts against 0.5 M-NaCl resulted in the precipitation of about 12% of the glycosaminoglycans in the saline extracts and about 40% in GuCl extract. These subfractions, which were relatively enriched in heparan sulfate, were largely soluble in dithiothreitol in 8 m -urea (DTT). Similarities between the proteoglycans in the medium and those extracted by balanced salt solutions suggest that the saline-extracted proteoglycans were for the most part loosely associated with cell surfaces or extracellular matrices, whereas the GuCl-extracted proteoglycans probably were bound to membranes.  相似文献   

17.
Mouse 3T3 cells and their Simian Virus 40-transformed derivatives (3T3SV) were used to assess the relationship of transfromation, cell density, and growth control to the cellular distribution of newly synthesized glycosaminoglycan (GAG). Glucosamine- and galactosamine- containing GAG were labeled equivalently by [3H=A1-glucose regardless of culture type, allowing incorporation into the various GAG to be compared under all conditions studied. Three components of each culture type were examined: the cells, which contain the bulk of newly synthesized GAG and are enriched in chondroitin sulfate and heparan sulfate; cell surface materials released by trypsin, which contain predominantly hyaluronic acid; and the media , which contain predominantly hyaluronic acid and undersulfated chondroitin sulfate. Increased cell density and viral transformation reduce incorporation into GAG relative to the incorporation into other polysaccharides. Transformation, however, does not substantially alter the type or distribution of newly synthesized GAG; the relative amounts and cellular distributions were very similar in 3T3 and 3T3SV cultures growing at similar rates at low densities. On the other hand, increased cell density as well as density-dependent growth inhibition modified the type and distribution of newly synthesized GAG. At high cell densities both cell types showed reduced incorporation into hyaluronate and an increase in cellular GAG due to enhanced labeling of chondroitin sulfate and heparan sulfate. These changes were more marked in confluent 3T3 cultures which also differed in showing substantially more GAG label in the medium and in chondroitin-6-sulfate and heparan sulfate at the cell surface. Since cell density and possibly density- dependent inhibition of growth but not viral transformation are major factors controlling the cellular distribution and type of newly synthesized GAG, differences due to GAG's in the culture behavior of normal and transformed cells may occur only at high cell density. The density-induced GAG alterations most likely involved are increased condroitin-6-sulfate and heparan sulfate and decreased hyaluronic acid at the cell surface.  相似文献   

18.
The effects of heparin and other glycosaminoglycans (GAGs) on the mitogenicity and stability of acidic fibroblast growth factor (aFGF) were studied. The mitogenic activity of aFGF was assayed utilizing cultured adult human endothelial cells (AHECs) isolated from iliac arteries and veins as target cells. In most experiments, aFGF purified from bovine brain was employed; in some experiments recombinant bovine aFGF was used and qualitatively similar results were obtained. In the presence of heparin, bovine aFGF at doses between 0.5 and 1.0 ng/ml (30-60 pM) elicited half the maximum AHEC growth over a 4-day period depending on the cell line tested; in the absence of heparin, significant growth was not observed at aFGF concentrations less than 10-20 ng/ml. This effect of heparin was dose-dependent over the range 0.1-10 micrograms/ml (half-maximum dose, 2 micrograms/ml). The mitogenic activity of bovine aFGF for AHECs decreased by 50% after preincubation in culture medium without cells at 37 degrees C for 2 1/2 to 3 hours. In contrast, the mitogenic activity of bovine aFGF preincubated in the presence of heparin-containing culture medium without cells was dramatically stabilized (half-life 24-29 hours). These effects also were observed in serum-free medium. Several GAGs structurally related to heparin such as chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, and hyaluronic acid neither potentiated nor stabilized aFGF mitogenic activity. However, heparan sulfate from bovine lung was found to be nearly as active as heparin in both these effects. These data suggest that the binding and stabilization of mitogens by extracellular and tissue-associated heparan sulfates might play important roles in the regulation of AHEC growth.  相似文献   

19.
Chondroitin sulfates, dermatan sulfate, heparan sulfate, heparin, keratan sulfate, and oligosaccharides derived from these sulfated glycosaminoglycans have been used for the measurement of sulfatase activity of rat skin extracts. Chromatographic fractionation of the extracts followed by specificity studies demonstrated the existence of five different sulfatases, specific for 1) the nonreducing N-acetylglucosamine 6-sulfate end groups of heparin sulfate and keratan sulfate, 2) the nonreducing N-acetylgalactosamine (or galactose) 6-sulfate end groups of chondroitin sulfate (or keratan sulfate), 3) the nonreducing N-acetylgalactosamine 4-sulfate end groups of chondroitin sulfate and dermatan sulfate, 4) certain suitably located glucosamine N-sulfate groups of heparin and heparan sulfate, or 5) certain suitably located iduronate sulfate groups of heparan sulfate and dermatan sulfate. Two arylsulfatases, one of which was identical in its chromatographic behaviors with the third enzyme described above, were also demonstrated in the extracts. These results taken together with those previously obtained from studies on human fibroblast cultures suggest that normal skin fibroblasts contain at least five specific sulfatases and diminished activity of any one may result in a specific storage disease.  相似文献   

20.
Sulfated glycosaminoglycan (GAG) synthesis by primary cultures of embryo, yolk sac, and trophoblast was compared with synthesis by the same tissues in utero. In general, the in vivo and in vitro results were in good agreement. As was the case in vivo, the three tissues synthesized chondroitin-4-sulfate and chondroitin-6-sulfate (but no dematan sulfate) at characteristic ratios.Cultured embryos are already capable of synthesizing chondroitin sulfates, primarily chondroitin-4-sulfate, before, or at, the 64-cell stage. During the attachment and initiation of outgrowth stages, blastocysts synthesize more chondroitin-6-sulfate than chondroitin-4-sulfate. Thereafter, progressively more chondroitin-4-sulfate is synthesized so that the 4:6 ratio increases, resembling that of trophoblast cells.Blastocyst-derived cell lines and teratoma cell cultures were also studied. One blastocyst-derived line, MB4, synthesized GAG with a pattern similar to that of yolk sac, which it resembles biochemically in other respects as well. The GAG profile of MB2, a parietal endoderm-like cell line resembled neither that of embryo, yolk sac, nor trophoblast cells. Embryonal carcinoma (undifferentiated teratoma) cells had a chondroitin sulfate pattern different from that of most of the other cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号